首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In serum-containing medium, ascorbic acid induces maturation of prehypertrophic chick embryo sternal chondrocytes. Recently, cultured chondrocytes have also been reported to undergo maturation in the presence of bone morphogenetic proteins or in serum-free medium supplemented with thyroxine. In the present study, we have examined the combined effect of ascorbic acid, BMP-2, and serum-free conditions on the induction of alkaline phosphatase and type X collagen in chick sternal chondrocytes. Addition of either ascorbate or rhBMP-2 to nonconfluent cephalic sternal chondrocytes produced elevated alkaline phosphatase levels within 24–72 h, and simultaneous exposure to both ascorbate and BMP yielded enzyme levels at least threefold those of either inducer alone. The effects of ascorbate and BMP were markedly potentiated by culture in serum-free medium, and alkaline phosphatase levels of preconfluent serum-free cultures treated for 48 h with BMP + ascorbate were equivalent to those reached in serum-containing medium only after confluence. While ascorbate addition was required for maximal alkaline phosphatase activity, it did not induce a rapid increase in type X collagen mRNA. In contrast, BMP added to serum-free medium induced a three- to fourfold increase in type X collagen mRNA within 24 h even in the presence of cyclohexamide, indicating that new protein synthesis was not required. Addition of thyroid hormone to serum-free medium was required for maximal ascorbate effects but not for BMP stimulation. Neither ascorbate nor BMP induced alkaline phosphatase activity in caudal sternal chondrocytes, which do not undergo hypertrophy during embryonic development. These results indicate that ascorbate + BMP in serum-free culture induces rapid chondrocyte maturation of prehypertrophic chondrocytes. The mechanisms for ascorbate and BMP action appear to be distinct, while BMP and thyroid hormone may share a similar mechanism for induction. J. Cell. Biochem. 66:394–403, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
In serum-free medium, insulin-like growth factor-I/somatomedin-C (IGF-I/SM-C) was weakly mitogenic for adult human fibroblasts in culture. However, in the presence of 0.5% human hypopituitary serum (HHS), which by itself had little effect, there was a marked dose-dependent response to IGF-I/SM-C with a 10- to 20-fold increase in [3H]thymidine incorporation at 25 ng/ml IFG-I/SM-C. With the further addition of dexamethasone or hydrocortisone to the combination of IGF-I/SM-C + 0.5% HHS, there was a dramatic synergistic effect resulting in a 60- to 70-fold increase in [3H]thymidine incorporation. This stimulation was two times greater than that seen with 20% FCS. In contrast, glucocorticoids had no effect in serum-free medium or with HHS alone. These [3H]thymidine incorporation results were clearly supported by cell replication studies. Dose-response curves for 125I IGF-I/SM-C binding and IGF-I/SM-C stimulation of [3H]thymidine incorporation were similar with 1/2 maximal effects for both at 5 ng/ml. However, the striking synergism seen with glucocorticoids occurred in the absence of any glucocorticoid-induced change in IGF-I/SM-C binding, indicating that the interaction of IGF-I/SM-C and glucocorticoids occurs at a postreceptor level. These data demonstrate that in the presence of a low concentration of HHS, IGF-I/SM-C and glucocorticoids stimulate complete cell cycle traverse and replication of human fibroblasts.  相似文献   

3.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

4.
This is a study of the regulation of human articular chondrocyte proliferation by transforming growth factor β (TGFβ) and interleukin-1β (IL-1β) in vitro. Human articular chondrocytes were cultured at different cell densities on plastic and on a collagen substratum, in the presence and absence of serum. The effects TGFβ amd IL-1β on proliferation of chondrocytes, as determined by [3H]thymidine incorporation, under these conditions of culture were examined. TGFβ was found to have both stimulatory and inhibitory effects on chondrocytes in vitro. Interactions between TGFβ and growth factors present in serum influence the modulation of chondrocyte proliferation by TGFβ. IL-1β caused a significant reduction of the TGFβ-stimulated increase in chondrocyte proliferation. The complex inter-relationships between TGFβ and IL-1β on chondrocytes have implications for cartilage repair.  相似文献   

5.
The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

7.
Cholecystokinin-8 (CCK-8) causes exocrine pancreatic hypertrophy and hyperplasia. High doses of the CCK analogue cerulein causes necrosis and an inflammatory response in the pancreas. We have studied the pancreatic growth response in rats after administration of CCK-8 for 3 days, given either intermittently (20-80 microg/kg) twice a day, or continuously (2.4-48 microg/kg per 24 h). Plasma CCK-8 levels, pancreatic wet weight, water, protein and DNA contents and the pancreatic caspase-3 activity were measured. Cell proliferation was visualized by [3H]thymidine incorporation and apoptosis by TUNEL reaction. Continuous administration of CCK-8 dose-dependently increased the plasma CCK levels, the pancreatic wet weight, protein and DNA contents as well as thymidine labeling index, apoptotic index and caspase-3 activity. Intermittent injections of CCK-8 caused transient raises in plasma CCK, increased apoptotic index and caspase-3 activity, a dose-dependent increase in thymidine labeling but caused a dose-dependent reduction of pancreatic wet weight, protein, and DNA contents. It is concluded that CCK-8 causes both increased proliferation and apoptosis in the pancreas. In case of continuous administration of CCK-8, the proliferation outweighs the apoptosis causing hyperplasia but in the case of intermittent administration the opposite effect is seen.  相似文献   

8.
Phosphate is required for terminal differentiation of hypertrophic chondrocytes during postnatal growth plate maturation. In vitro models of chondrocyte differentiation demonstrate that 7 mM phosphate, a concentration analogous to that of the late gestational fetus, activates the mitochondrial apoptotic pathway in hypertrophic chondrocytes. This raises the question as to whether extracellular phosphate modulates chondrocyte differentiation and apoptosis during embryonic endochondral bone formation. To address this question, we performed investigations in the mouse metatarsal culture model that recapitulates in vivo bone development. Metatarsals were cultured for 4, 8, and 12 days with 1.25 and 7 mM phosphate. Metatarsals cultured with 7 mM phosphate showed a decrease in proliferation compared to those cultured in 1.25 mM phosphate. This decrease in proliferation was accompanied by an early enhancement in hypertrophic chondrocyte differentiation, associated with an increase in FGF18 expression. By 8 days in culture, an increase caspase‐9 activation and apoptosis of hypertrophic chondrocytes was observed in the metatarsals cultured in 7 mM phosphate. Immunohistochemical analyses of embryonic bones demonstrated activation of caspase‐9 in hypertrophic chondrocytes, associated with vascular invasion. Thus, these investigations demonstrate that phosphate promotes chondrocyte differentiation during embryonic development and implicate a physiological role for phosphate activation of the mitochondrial apoptotic pathway during embryonic endochondral bone formation. J. Cell. Biochem. 108: 668–674, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
K L Crossin  D H Carney 《Cell》1981,23(1):61-71
Microtubule disrupting drugs initiated DNA synthesis in serum-free cultures of nonproliferating fibroblast-like cells. The addition of colchicine to chick, mouse and human fibroblasts in serum-free medium stimulated thymidine incorporation at least twofold, with a half-maximal concentration of 1 X 10(-7) M. This stimulation represented up to 75% of the maximal stimulation by thrombin and was paralleled by an increase in the percentage of labeled nuclei. Other microtubule disrupting drugs showed similar stimulation, whereas lumicolchicine had no effect. Indirect immunofluorescent staining of tubulin showed a correlation between microtubule depolymerization and initiation of DNA synthesis by these drugs. A 2 hr treatment with 10(-6) M colchicine caused complete disruption of the microtubular network and stimulated thymidine incorporation (measured 28 hr later) to an even greater extent than continuous colchicine exposure. A similar 2 hr exposure to 10(-6) M colcemid also stimulated thymidine incorporation and led to a 50% increase in cell number. Taxol, a drug which stabilizes cytoplasmic microtubules, blocks initiation of DNA synthesis by colchicine, indicating that microtubule depolymerization is necessary for this initiation. To determine if microtubule depolymerization is involved in stimulation of DNA synthesis by other growth factors, highly purified human thrombin was added to cells with or without colchicine. In no case did colchicine plus thrombin increase DNA synthesis above that of the maximal stimulation by thrombin alone. Furthermore, pretreatment of cultures with taxol (5 micrograms/ml) inhibited approximately 30% of the stimulation of thymidine incorporation by thrombin. Together, these studies demonstrate that microtubule depolymerization is sufficient to initiate both DNA synthesis and events leading to cell division and suggest that microtubule depolymerization may be a required step in initiation of cell proliferation by growth factors such as highly purified human thrombin.  相似文献   

10.
Alkaline phosphatase (AP) activity in epiphyseal growth plate cartilage increases markedly during differentiation of the chondrocytes, and reaches high levels in the zone of hypertrophy where vascular penetration and provisional mineralization begin. A proteinaceous factor has been discovered in serum that stimulates the expression of AP in chicken growth plate chondrocytes when these cells are grown in serum-free media. Sera from a variety of vertebrate species (goat, fetal bovine, horse, human, and chicken) all contained detectable levels of the inducing activity. The chondrocyte AP-induction factor (CAP-IF) from fetal bovine serum was precipitated with ammonium sulfate between 33% and 50% saturation, and purified by dye-ligand affinity chromatography. The active fraction, which eluted from an Affi-Gel Blue column between 0.10 and 0.15 M NaCl, was further resolved on a QMA anion exchange column. The most active and almost homogeneous fraction contained primarily a 64.5 kDa protein; about 3 micrograms/ml medium induced 50% of the maximal level of AP induction. CAP-IF is stable to heat (100 degrees C for 3 min) and dithiothreitol (50 mM) treatment, and is only mildly inactivated by 2 h treatment with trypsin. CAP-IF caused no significant effect on cell division as measured by 3H-thymidine uptake. Time-course studies revealed that at least 18-24 h exposure of the chondrocytes to CAP-IF is required to produce major increases in AP activity. Longer exposure time generally further increases the response. Cycloheximide almost completely blocked the increase in AP activity, indicating that de novo protein synthesis is required for induction.  相似文献   

11.
The differentiation of preosseous chondrocytes begins with the proliferation of resting cells and results in the expression of the hypertrophic phenotype. The effect of fetal calf serum on chondrocyte mitogenesis and intracellular Ca2+ concentration was studied in resting and hypertrophic cells in primary culture. Resting chondrocytes respond to the growth stimulus with immediate release of Ca2+ from intracellular stores and with opening of the plasma membrane Ca2+ channels. These events may be related to the elevated [3H]thymidine incorporation observed after serum exposure. In contrast, in hypertrophic chondrocytes the lower rate of DNA synthesis seems to be coupled with a lower activity of the Ca2+ signaling mechanism and, probably, with reduced intracellular calcium stores. It is proposed that expression of the Ca2+ signaling mechanism may be modulated during the differentiation of preosseous chondrocytes.  相似文献   

12.
Longitudinal bone growth occurs by a process called endochondral ossification that includes chondrocyte proliferation, differentiation, and apoptosis. Recent studies have suggested a regulatory role for intracellular Ca(2+) (Ca(i) (2+)) in this process. Indirect studies, using Ca(2+) channel blockers and measurement of Ca(i) (2+), have provided evidence for the existence of Ca(2+) channels in growth plate chondrocytes. Furthermore, voltage-gated Ca(2+) channels (VGCC), and specifically L- and T-type VGCCs, have been recently described in murine embryonic growth plates. Our aim was to assess the effect of L-type Ca(2+) channel blockers on endochondral ossification in an organ culture. We used cultures of fetal rat metatarsal rudiments at 20 days post gestational age, with the addition of the L-type Ca(2+) channel blockers verapamil (10-100 microM) or diltiazem (10-200 microM) to the culture medium. Longitudinal bone growth, chondrocyte differentiation (number of hypertrophic chondrocytes), and cell proliferation (incorporation of tritiated thymidine) were measured. Verapamil dose-dependently decreased growth, the number of hypertrophic chondrocytes, and cell proliferation, at concentrations of 10-100 microM. Growth and the number of hypertrophic chondrocytes decreased significantly with diltiazem at 50-100 microM, and proliferation decreased significantly at concentrations of 10-200 microM. Additionally, there was no increase in apoptosis over physiological levels with either drug. We confirmed the presence of L-type VGCCs in rat rudiments using immunohistochemistry, and showed that the antagonists did not alter the pattern of VGCC expression. In conclusion, our data suggest that L-type Ca(2+) channel activity in growth plate chondrocytes is necessary for normal longitudinal growth, participating in chondrocyte proliferation and differentiation.  相似文献   

13.
Insulin-like growth factor I (IGF-I) is anabolic for chondrocytes and is thought to be important in regulating such normal cartilaginous tissues as the epiphyseal growth plate. In the present studies, we have investigated the role of IGF-I in the regulation of neoplastic cartilage. Chondrocytes cultured from a transplantable rat chondrosarcoma were analyzed for responsiveness to IGF-I with respect to DNA and glycosaminoglycan synthesis as determined by labeling with radioactive thymidine and sulfate, respectively. Stimulation of [3H]thymidine and [35S]sulfate incorporation by IGF-I was two to four times that in serum-free controls, with half-maximal stimulation at 1 × 10-9M. The efficacy of IGF-I was approximately one-half of that of serum in stimulating [3H]thymidine incorporation and was comparable to that of serum for [35S]sulfate incorporation. When Swarm rat chondrosarcoma chondrocytes were cultured in the presence of IGF-I and exposed to graded concentrations of anti-IGF-I antibody, [3H]thymidine incorporation and [35S]sulfate incorporation were attenuated in a dose-dependent fashion to 29 and 25% of antibody-free controls, respectively. Nonspecific antibody not raised against IGF-I was not inhibitory. These observations suggest that the majority of IGF-I action on these cells is susceptible to immunoinhibition. To estimate the contribution of IGF-I to the regulation of these cells by serum, Swarm rat chondrosarcoma chondrocytes were cultured with graded concentrations of either calf serum or fetal calf serum in the presence of anti-IGF-I antibody, nonspecific antibody, or no other additives. Specific antibody attenuated the effect of calf serum on both [3H]thymidine and [35S]sulfate incorporation with overall inhibition of 52% (P < 0.01) and 48% (P < 0.001), respectively. Nonspecific antibody superimposed small, variably stimulatory or inhibitory effects on those of calf serum. When chondrosarcoma chondrocytes were incubated with fetal calf serum, anti-IGF-I antibody exerted a minimal inhibitory effect, reducing both [3H]thymidine and [35S]sulfate incorporation by less than 25%. The immunoinhibition of both pre- and postnatal serum could be overcome in a dose-dependent fashion by increasing serum concentrations. These results suggest that the factors influencing Swarm rat chondrosarcoma chondrocytes may be developmentally regulated and that the contribution of IGF-I to the action of serum increases between fetal and postnatal life. These data support the hypothesis that chondrosarcoma is a somatomedin-responsive neoplasm and suggest that this tumor may be susceptible to interventions directed toward mechanisms that block insulin-like growth factor action.  相似文献   

14.
Chondrocytes of the cartilaginous growth plate are found in a spatial gradient of cellular differentiation beginning with cellular proliferation and ending with cellular hypertrophy. Although it is recognized that both proliferation and hypertrophy contribute significantly to overall bone growth, mechanisms acting on the chondrocyte to control the timing, the rate, and the extent of hypertrophy are poorly understood. Similarly, mechanisms acting on the terminal chondrocyte to cause its death at the chondro-osseous junction have not been investigated. In this study we examine the condensation of terminal hypertrophic chondrocytes in proximal and distal radial growth plates of Yucatan swine at 4 weeks of age. The animals were raised in a controlled environment where activity and feeding patterns were synchronized to a given time in the light/dark cycle. We analyzed cellular condensation both as a function of circadian rhythms in a 24-hr time period, and as a function of overall rate of growth. The data suggest that the magnitude of circadian influences on long bone growth is significantly damped at the level of the hypertrophic chondrocyte compared to that seen by previous investigators studying circadian influences on chondrocytic proliferation. Secondly, the condensation of hypertrophic chondrocytes at the chondro-osseous junction varies inversely with rate of growth in length of the bone. At any time period, a higher percentage of terminal chondrocytes in the condensed form was found in the slower-growing of the two growth plates. We relate these findings to current hypotheses concerning controls of chondrocytic hypertrophy and possible controls over the timing of hypertrophic cell death.  相似文献   

15.
During the process of endochondral ossification chondrocytes progress through stages of terminal differentiation culminating in apoptotic death. We have developed a serum-free suspension culture that allows terminal differentiation and facilitates the investigation of factors affecting chondrocyte apoptosis. We have found that chondrocytes not committed to terminal differentiation, i.e., those from the caudal region of chick embryo sterna, a region that remains cartilaginous for some months after the chick hatches, maintained high viability in serum-free suspension culture. A strong dependence of viability on culture density and sensitivity to induction of apoptosis with the protein kinase inhibitor, staurosporine, was consistent with the proposal that these chondrocytes, like nearly all cells, require intercellular communication for survival. Chondrocytes that were committed to terminal differentiation, i.e., those from the cephalic region of chick embryo sterna, a region that is replaced by bone before the chick hatches, expressed the hypertrophic phenotype but maintained their viability in culture for only approximately 6 days. Subsequent cell death was very consistent between cultures and shown to occur by an apoptotic process by analysis of DNA fragmentation and cell morphology. Short-term viability of hypertrophic chondrocytes was independent of culture density and relatively resistant to treatment with staurosporine. Induction of the hypertrophic phenotype in immature chondrocytes committed them to cell death and prevention of expression of the hypertrophic phenotype prevented cell death. We conclude that commitment of chondrocytes to terminal differentiation is associated with a commitment to apoptosis and apoptosis of hypertrophic chondrocytes in growth cartilage does not require initiation by external signals.  相似文献   

16.
The incorporation of tritiated thymidine into CCL-39 cells grown in the absence of fetal calf serum or other growth factors is greatly increased by low concentrations of ceruloplasmin. The stimulation is greater than observed with serum or thrombin. Addition of serum decreases the thymidine incorporation with ceruloplasmin to the level with serum alone. As with serum, the response to ceruloplasmin is high at both 20% and 1% oxygen, which is consistent with the action of ceruloplasmin as an oxidant with a high affinity for oxygen. Since transplasma membrane electron transport increases cell growth and thymidine incorporation, ceruloplasmin may act as a terminal oxidase for ferrous iron or ascorbate to stimulate transplasma membrane electron transport. The four electron transfer from ceruloplasmin to oxygen to form water will prevent peroxide formation at the cell surface. Alternatively, superoxide formation inside the cell or membrane could employ the superoxide dismutase function of ceruloplasmin to produce peroxide. Either mechanism would be consistent with the previously described stimulation of growth by external oxidants.  相似文献   

17.
The FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity. Sprys are expressed in close proximity to FGF signaling centers and regulate FGFR-ERK-mediated organogenesis. During endochondral ossification, Spry genes are expressed in prehypertrophic and hypertrophic chondrocytes. Using a conditional transgenic approach in chondrocytes in vivo, the forced expression of Spry1 resulted in neonatal lethality with accompanying skeletal abnormalities resembling thanatophoric dysplasia II, including increased apoptosis and decreased chondrocyte proliferation in the presumptive reserve and proliferating zones. In vitro chondrocyte cultures recapitulated the inhibitory effect of Spry1 on chondrocyte proliferation. In addition, overexpression of Spry1 resulted in sustained ERK activation and increased expression of p21 and STAT1. Immunoprecipitation experiments revealed that Spry1 expression in chondrocyte cultures resulted in decreased FGFR2 ubiquitination and increased FGFR2 stability. These results suggest that constitutive expression of Spry1 in chondrocytes results in attenuated FGFR2 degradation, sustained ERK activation, and up-regulation of p21Cip and STAT1 causing dysregulated chondrocyte proliferation and terminal differentiation.  相似文献   

18.
Chondrocytes freshly explanted from the sternal cartilage of 14- to 16-day-old chick embryos proliferate and differentiate in cell culture in a serum-free medium as well as in a medium containing 10% foetal calf serum. A comparable degree of multiplication and differentiation was found in chondrocytes cultivated in the serum-free medium containing native growth-promoting alpha-globulin (GPAG). The degree of proliferation was smaller in chondrocytes cultivated in a modified Eagle MEM which is fully chemically defined and contains low molecular weight substrates only. Since this medium does not contain either hormones or proteins, it is suitable for the cultivation of chondrocytes which should be employed when studying the mechanism of the effect of hormones which influence chondrocyte proliferation or chondrogenesis.  相似文献   

19.
Chondrocytes in dense suspension culture in agarose survive in serum-free DME because they secrete low molecular mass compounds supporting their own viability. This activity can be replaced by pyruvate, or sulfhydryl compounds, e.g., cysteine or dithioerythritol. Catalase, an enzyme decomposing H2O2, also protects the cells, whereas superoxide dismutase has no effect. Therefore, chondrocytes in culture are sensitive to toxic compounds derived from molecular oxygen, i.e., hydroxyl radicals or hydrogen peroxide spontaneously generated in DME containing ascorbate and ferrous ions. Poly-ADP-ribosylation is an important step in the cascade of events triggered by these compounds. To survive, chondrocytes do not require stimulation by growth factors. They remain resting cells in fully defined, serum-free culture also at low density. Proliferation and hypertrophy can be induced by serum, but not by low cell density alone.  相似文献   

20.
Exosomes are membranous vesicles containing various biomolecules, including non-coding RNAs (ncRNAs). ncRNAs are secreted from several cell types and are involved in various biological functions, including cellular communication. The aim of this study was to identify and illustrate the significance of the osteoarthritis (OA)-specific packaging of exosomal ncRNAs. In this study, we hypothesized that selective packaging of ncRNAs into exosomes would reflect the cellular response to chondrocyte death during OA pathogenesis. Exosomal HULC level significantly decreased in OA exosomes, whereas exosomal miR-372-3p level significantly increased in OA exosomes. In addition, chondrocytes with high HULC levels in the cytosol showed lower overall proliferation and higher apoptotic cell death than normal chondrocytes, whereas chondrocytes with high miR-372-3p in the cytosol showed higher overall proliferation and lower cell death than OA chondrocytes. Among the signaling molecules known to be involved in OA pathogenesis, GSK is one of the regulators of the selective exosomal packaging observed in OA chondrocytes. Inhibition of GSK observed in OA chondrocytes was responsible for enriched uploading of miR-372-3p and suppressed uploading of HULC during OA pathogenesis. In conclusion, we show that selective ncRNAs observed in OA play a critical role in chondrocyte proliferation/apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号