首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the cellular and molecular regulation of the uptake process of the water-soluble vitamin biotin into liver cells, the major site of biotin utilization and metabolism. Such studies are best done using a highly viable and homogeneous cellular system that allows examination of prolonged exposure to an agent(s) or a particular condition(s) on the uptake process. Isolated hepatocytes when maintained in primary culture lose their ability to transport biotin by the specialized carrier system. The aim of the present study was, therefore, to examine the mechanism(s) of biotin uptake by the cultured human-derived liver cells, Hep G2. Uptake to biotin by Hep G2 cells was appreciable and linear for up to 10 min of incubation. The uptake process was Na+ gradient-dependent as indicated by studies of Na+ replacement and pretreatment of cells with gramicidin and ouabain. Biotin uptake was also dependent on both incubation temperature and intracellular energy. Unlabeled biotin and the structural analogs with free carboxyl groups (thioctic acid, desthiobiotin) but not those with blocked carboxyl group (biocytin, biotin methyl ester, and thioctic amide) caused significant inhibition of 3H-biotin uptake at 37°C but not 4°C. Initial rate of biotin uptake was saturable as a function of concentration at 37°C but was lower and linear at 4°C. Pretreatment of Hep G2 cells with sulfhydryl group inhibitors (e.g., p-chloromer-curibenzene sulfonate) led to a significant inhibition in biotin uptake; this inhibition was effectively reversed by reducing agents (e.g., dithiothreitol). Biotin uptake was also inhibited by the membrane transport inhibitors probenecid (noncompetitively), DIDS and furosemide but not by amiloride. Pretreatment of Hep G2 cells with valinomycin did not alter biotin uptake. The stoichiometric ratio of biotin to Na+ uptake in Hep G2 cells was also determined and found to be 1:1. These findings demonstrate that biotin uptake by these cultured liver cells is mediated through a specialized carrier system that is dependent on Na+-gradient, temperature, and energy and transports the vitamin by an electroneutral process. These findings are similar to those seen with native liver tissue preparations and demonstrate the suitability of Hep G2 cells for in-depth investigations of the cellular and molecular regulation of biotin uptake by the liver. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work, and as such, is in the public domain in the United State of America
  • .  相似文献   

    2.
    Mammalian cells obtain vitamin B1 (thiamin) from their surrounding environment and convert it to thiamin pyrophosphate (TPP) in the cytoplasm. Most of TPP is then transported into the mitochondria via a carrier-mediated process that involves the mitochondrial thiamin pyrophosphate transporter (MTPPT). Knowledge about the physiological parameters of the MTPP-mediated uptake process, MTPPT targeting and the impact of clinical mutations in MTPPT in patients with Amish lethal microcephaly and neuropathy and bilateral striatal necrosis are not fully elucidated, and thus, were addressed in this study using custom-made 3H-TPP as a substrate and mitochondria isolated from mouse liver and human-derived liver HepG2 cells. Results showed 3H-TPP uptake by mouse liver mitochondria to be pH-independent, saturable (Km = 6.79±0.53 µM), and specific for TPP. MTPPT protein was expressed in mouse liver and HepG2 cells, and confocal images showed a human (h)MTPPT-GFP construct to be targeted to mitochondria of HepG2 cells. A serial truncation analysis revealed that all three modules of hMTPPT protein cooperated (although at different levels of efficiency) in mitochondrial targeting rather than acting autonomously as independent targeting module. Finally, the hMTPPT clinical mutants (G125S and G177A) showed proper mitochondrial targeting but displayed significant inhibition in 3H-TPP uptake and a decrease in level of expression of the MTPPT protein. These findings advance our knowledge of the physiology and cell biology of the mitochondrial TPP uptake process. The results also show that clinical mutations in the hMTPPT system impair its functionality via affecting its level of expression with no effect on its targeting to mitochondria.  相似文献   

    3.
    4.
    Riboflavin uptake by human-derived colonic epithelial NCM460 cells   总被引:2,自引:0,他引:2  
    Normal microflora ofthe large intestine synthesize a number of water-soluble vitaminsincluding riboflavin (RF). Recent studies have shown that colonicepithelial cells posses an efficient carrier-mediated mechanism forabsorbing some of these micronutrients. The aim of the present studywas to determine whether colonic cells also posses a carrier-mediatedmechanism for RF uptake and, if so, to characterize this mechanism andstudy its cellular regulation. Confluent monolayers of thehuman-derived nontransformed colonic epithelial cells NCM460 and[3H]RF were used in the study. Uptake of RF wasfound to be 1) appreciable and temperature and energydependent; 2) Na+ independent; 3) saturableas a function of concentration with an apparent Kmof 0.14 µM and Vmax of 3.29 pmol · mgprotein1 · 3 min1; 4) inhibited by the structural analogslumiflavin and lumichrome (Ki of 1.8 and 14.1 µM,respectively) but not by the unrelated biotin; 5) inhibited ina competitive manner by the membrane transport inhibitor amiloride(Ki = 0.86 mM) but not by furosemide, DIDS, orprobenecid; 6) adaptively regulated by extracellular RF levels with a significant and specific upregulation and downregulation in RFuptake in RF-deficient and oversupplemented conditions, respectively;and 7) modulated by an intracellularCa2+/calmodulin-mediated pathway. These studies demonstratefor the first time the existence of a specialized carrier-mediatedmechanism for RF uptake in an in vitro cellular model system of humancolonocytes. This mechanism appears to be regulated by extracellularsubstrate level and by an intracellularCa2+/calmodulin-mediated pathway. It is suggested that theidentified transport system may be involved in the absorption ofbacterially synthesized RF in the large intestine and that this sourceof RF may contribute toward RF homeostasis, especially that of colonocytes.

      相似文献   

    5.
    After the liver, the pancreas contains the second highest level of folate among human tissues, and folate deficiency adversely affects its physiological function. Despite that, nothing is currently known about the cellular mechanisms involved in folate uptake by cells of this important exocrine organ or about folate uptake regulation. We have begun to address these issues, and in this report we present the results of our findings on the mechanism of folate uptake by the human-derived pancreatic MIA PaCa-2 cells. Our results show folic acid uptake to be 1) temperature and energy dependent; 2) pH dependent, with a markedly higher uptake at acidic pH compared with neutral or alkaline pH; 3) Na+ independent; 4) saturable as a function of substrate concentration (apparent Km = 0.762 ± 0.10 µM); 5) inhibited (with similar affinity) by reduced, substituted, and oxidized folate derivatives; and 6) sensitive to the inhibitory effect of anion transport inhibitors. RT-PCR and Western blot analysis showed expression of the human reduced folate carrier (hRFC) at the RNA and protein levels, respectively. The functional contribution of hRFC in carrier-mediated folate uptake was confirmed by gene silencing using gene-specific small interfering RNA. Evidence also was found suggesting that the folate uptake process by MIA PaCa-2 cells is regulated by cAMP- and protein tyrosine kinase (PTK)-mediated pathways. These studies demonstrate for the first time the involvement of a specialized, acidic pH-dependent, carrier-mediated mechanism for folate uptake by human pancreatic MIA PaCa-2 cells. The results also show the involvement of hRFC in the uptake process and suggest the possible involvement of intracellular cAMP- and PTK-mediated pathways in the regulation of folate uptake. human reduced folate carrier; small interfering RNA; transport regulation  相似文献   

    6.
    Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble nature of vitamin B6 and the demonstration that transport of other water-soluble vitamins in intestinal epithelial cells involves specialized carrier-mediated mechanisms, we hypothesized that transport of vitamin B6 in these cells is also carrier mediated in nature. To test this hypothesis, we examined pyridoxine transport in a model system for human enterocytes, the human-derived intestinal epithelial Caco-2 cells. The results showed pyridoxine uptake to be 1) linear with time for up to 10 min of incubation and to occur with minimal metabolic alteration in the transported substrate, 2) temperature and energy dependent but Na+ independent, 3) pH dependent with higher uptake at acidic compared with alkaline pHs, 4) saturable as a function of concentration (at buffer pH 5.5 but not 7.4) with an apparent Michaelis-Menten constant (Km) of 11.99 ± 1.41 µM and a maximal velocity (Vmax) of 67.63 ± 3.87 pmol · mg protein-1 · 3 min-1, 5) inhibited by pyridoxine structural analogs (at buffer pH 5.5 but not 7.4) but not by unrelated compounds, and 6) inhibited in a competitive manner by amiloride with an apparent inhibitor constant (Ki) of 0.39 mM. We also examined the possible regulation of pyridoxine uptake by specific intracellular regulatory pathways. The results showed that whereas modulators of PKC, Ca+2/calmodulin (CaM), and nitric oxide (NO)-mediated pathways had no effect on pyridoxine uptake, modulators of PKA-mediated pathway were found to cause significant reduction in pyridoxine uptake. This reduction was mediated via a significant inhibition in the Vmax, but not the apparent Km, of the pyridoxine uptake process. These results demonstrate, for the first time, the involvement of a specialized carrier-mediated mechanism for pyridoxine uptake by intestinal epithelial cells. This system is pH dependent and amiloride sensitive and appears to be under the regulation of an intracellular PKA-mediated pathway. vitamin B6; intestinal transport; transport regulation; Caco-2 cell  相似文献   

    7.
    The mechanism of uptake of dietary niacin (nicotinic acid) by intestinal epithelial cells is not well understood, and nothing is known about regulation of the uptake process. In this investigation, we used human-derived intestinal epithelial Caco-2 cells and purified intestinal brush-border membrane vesicles (BBMVs) isolated from human organ donors to assess niacin uptake. Our findings show niacin uptake by Caco-2 cells to be 1) temperature and energy dependent; 2) Na+ independent, but highly dependent on extracellular acidic pH; 3) saturable as a function of concentration, with an apparent Km of 0.53 ± 0.08 µM; 4) severely inhibited by the membrane-impermeable sulfhydryl group of reagents; and 5) highly specific for niacin but not affected by monocarboxylic acids. A marked trans stimulation in [3H]niacin efflux from preloaded Caco-2 cells by unlabeled niacin in the incubation buffer was also observed. These findings suggest the involvement of a specialized, pH-dependent, carrier-mediated mechanism for human intestinal niacin uptake. This suggestion was confirmed in studies with native human intestinal BBMVs. We also examined possible regulation of niacin uptake by Caco-2 cells via specific intracellular regulatory pathways. The results show that while the PKA-, PKC-, and Ca2+/calmodulin-mediated regulatory pathways play no role in regulating niacin uptake, a role for a protein tyrosine kinase (PTK)-mediated pathway is apparent. The results of these studies show for the first time the existence of a specialized, acidic pH-dependent, carrier-mediated system of niacin uptake by human intestinal epithelial cells that operates at the micromolar (physiological) range of niacin. The results also suggest the possible involvement of a PTK-mediated pathway in the regulation of niacin uptake. intestinal transport; transport mechanism; transport regulation  相似文献   

    8.
    Transport of glycine by rat brain and liver mitochondria has been investigated by both [14C]glycine uptake and swelling experiments. Glycine enters mitochondria passively down its concentration gradient by a respiratory-independent carrier-mediated process. This view is supported by the following observations: (a) glycine inside the mitochondria reaches the incubation medium concentration; (b) mitochondria swell in the presence of isoosmotic solutions of glycine in a concentration-dependent fashion; (c) the uptake of glycine is not influenced by respiratory inhibitors such as KCN or by uncouplers such as carbonylcyanide p-trifluoromethoxyphenylhydrazone; (d) initial rates of uptake approach saturation kinetics, the apparent Km of the rat brain mitochondria for glycine being 1.7 mM and that of the liver mitochondria being 5.7 mM; (e) the rate of swelling is inhibited by methylmalonate, propionate and, at pH 6.5, by mersalyl, and (f) uptake is inhibited by phosphoserine, methylmalonate and propionate, but not by alanine or proline.  相似文献   

    9.
    As part of the enterohepatic circulation, taurocholate is taken up by hepatocytes by a Na+-gradient-dependent, carrier-mediated process. The dependence of taurocholate uptake on the presence of a Na+ gradient, outside greater than inside, has been studied in isolated rat liver plasma membranes. The uptake is specific for sodium, and a cotransport stoichiometry of 2 Na+ per taurocholate taken up was found. The presence of K+ ions inside the vesicles was also found to be essential for maximum Na+-stimulated uptake of taurocholate, although a K+ gradient is not required. Mg2+ was almost as effective as K+ in this regard. The symport of Na+ and taurocholate during uptake was shown to be electrogenic, so that K+ may act as an exchange counterion preventing the accumulation of positive charge within the vesicles.Dedicated to the memory of Prof. David E. Green, friend, mentor, and colleague.  相似文献   

    10.
    11.
    The initial rate of oxalate-facilitated Ca2+ uptake by skeletal microsomes depends on both Ca2+ and oxalate concentrations in the medium. The apparent Km for Ca2+ increases with increasing oxalate concentration, indicating that Ca2+ uptake can involve a carrier-mediated transport system.  相似文献   

    12.
    The water-soluble vitamin B6 (pyridoxine) is important for normal cellular functions, growth, and development. The vitamin is obtained from two exogenous sources: a dietary source, which is absorbed in the small intestine, and a bacterial source, where the vitamin is synthesized in significant quantities by the normal microflora of the large intestine. Evidence exists to suggest the bioavailability of the latter source of the vitamin, but nothing is known about the mechanism involved and its regulation. In this study, we addressed these issues using young adult mouse colonic epithelial (YAMC) cells and human colonic apical membrane vesicles (AMV) as models and using [3H]pyridoxine as the uptake substrate. The results showed the initial rate of [3H]pyridoxine uptake by YAMC cells to be 1) energy- and temperature- (but not Na-) dependent and to occur without metabolic alteration in the transported substrate; 2) saturable as a function of concentration with an apparent Km and Vmax of 2.1 +/- 0.5 muM and 53.4 +/- 4.3 pmol.mg protein(-1).3 min(-1), respectively; 3) cis-inhibited by unlabeled pyridoxine and its structural analogs, but not by the unrelated compounds theophylline, penicillamine, and isoniazid; 4) trans-stimulated by unlabeled pyridoxine; 5) amiloride sensitive; and 6) regulated by extracellular and intracellular factors. Uptake of pyridoxine by native human colonic AMV was also found to involve a carrier-mediated process. These studies demonstrate, for the first time, the functional existence of a specific and regulatable carrier-mediated process for pyridoxine uptake by mammalian colonocytes.  相似文献   

    13.
    Sucrose uptake by developing soybean cotyledons   总被引:22,自引:16,他引:6       下载免费PDF全文
    Sucrose uptake by excised developing soybean cotyledons shows a biphasic dependence on sucrose concentration. At concentrations less than about 50 millimolar external sucrose, uptake can be described as a carrier-mediated process, with a Km of 8 millimolar. At higher external sucrose concentrations, a linear dependence becomes apparent, which suggests the participation of a nonsaturable component in total uptake. Sucrose absorption is dependent on the presence of an electrochemical potential gradient for protons since agents interfering with the generation or maintenance of this gradient (NaN3 or carbonylcyanide-m-chlorophenyl hydrazone) decrease sucrose transport to a level at or below that predicted from the operation of the noncarrier-mediated process alone. The saturable component of sucrose uptake is also sensitive to the sulfhydryl-modifying compounds N-ethylmaleimide and p-chloro-mercuribenzenesulfonate. The thiol-reducing agent diethioerythritol reverses fully the p-chloro-mercuri-benzenesulfonate inhibition, but not that of N-ethyl maleim de. Sucrose transport is sensitive to external pH, being decreased at high pH0. Since sucrose-induced depolarization of the membrane potential and carrier-mediated sucrose influx show similar pH-dependence, inhibitor sensitivity, and values of Km for sucrose, a sucrose/proton contransport process appears to operate in developing soybean cotyledon cells. Measurement of free space and intracellular sucrose concentrations in vivo suggests that the carrier-mediated process is fully saturated and that sucrose transport may be limiting for sucrose accumulation by the developing seed.  相似文献   

    14.
    The characteristics of valine uptake by isolated microcolonies of Galaxea fascicularis (Linnaeus 1758) were studied under various conditions including light, dark and feeding. The results demonstrated the presence of: (1) a linear component which might represent either a diffusional transport or a low-affinity carrier-mediated transport (apparent carrier affinity >250 mol·l–1), and (2) a high-affinity active carrier-mediated transport (apparent carrier affinity about 5 mol·l-1). The latter is mediated by two different systems: (i) a Na+-dependent carrier, stimulated by light and operative in both fed and unfed polyps, and (ii) a Na+-independent carrier, light insensitive and present only in unfed polyps. Competition experiments with other amino acids show that the Na+-dependent carrier is highly specific for neutral amino acids, as indicated by the high inhibition constants of basic and acidic amino acids. Our results suggest that the energy supplied by zooxanthellae photosynthates is necessary for the process of amino acid uptake, and that the Na+-dependent carrier responsible for valine uptake by G. fascicularis is similar to the B0,+ system.Abbreviations AA amino acid(s) - AC/HC ratio autotrophic/heterotrophic carbon - ASW artificial sea water - DOM dissolved organic material - HPLC high performance liquid chromatography - K 1 apparent inhibition constant - K m apparent affinity of the carrier - SE standard error - V max maximal rate of absorption  相似文献   

    15.
    Two human hepatoma cell lines, Hep G2 and Hep 3B, were screened for vitamin D3-25-hydroxylase enzyme activity by incubation with radioactive vitamin D3. A compound co-chromatographing with 25-OH-D3 was synthesized in both cell lines but its rate of synthesis was tenfold greater in Hep 3B than in Hep G2 cells. The identity of the compound was confirmed by comparing its chromatographic properties with authentic 25-OH-D3 on three different high pressure liquid chromatography systems. Its production was suppressed by adding fetal calf serum (10%), lipoprotein-deficient fetal calf serum, or pure vitamin D-binding globulin to the medium. The mechanism of action of these plasma proteins appears to involve retardation of uptake of the substrate. These two cell lines offer considerable potential as defined in vitro models for studying the effects of physiological factors on the 25-hydroxylation of vitamin D3.  相似文献   

    16.
    L1210 cells transport Pi in the absence of added Na+. Uptake shows saturation kinetics (Kt = 1.7 mM), is temperature-dependent, and can be reduced 80% by high levels of unlabeled Pi, and thus has the characteristics of a carrier-mediated process. This transport process is also inhibited by methotrexate. The methotrexate-sensitive component constitutes half of total Pi uptake, and is reduced by 50% at a concentration of methotrexate (2 μM) that is comparable to its Kt (1.5 μM) for transport into the cells. An impermeable fluorescent analog of methotrexate and an irreversible inhibitor of the methotrexate transport system (carbodiimide-activated methotrexate) also inhibit this same Pi uptake component. It is concluded that methotrexate and Pi can be transported by the same carrier system. The basis for this shared uptake is suggested to be that the methotrexate carrier protein facilitates the obligatory exchange of extracellular folate compounds for intracellular divalent anions, and that a primary exchange anion is Pi. A principal energy source for active transport of methotrexate might then be the concentration gradient for Pi that is maintained by the Na+-dependent, Pi transport system of these cells.  相似文献   

    17.
    Glucose-6-phosphate dehydrogenase (G6PDH) and the pentose phosphate pathway play a key role in reductive biosynthesis and antioxidant defense, while diverting glucose from other cellular functions. G6PDH was isolated from liver of the wood frog, Rana sylvatica, a freeze tolerant species that uses glucose as a cryoprotectant. Analysis of kinetic parameters (K m and V max) of G6PDH showed a significant increase in K m G6P (from 98.2 ± 3.8 to 121 ± 5.3 μM) and K m NADP+ (from 65.5 ± 2.3 to 89.1 ± 4.8 μM) in frogs following freezing exposure, indicating lower affinity for G6PDH substrates in this state. Subsequent analyses indicated that differential phosphorylation of G6PDH between the two states was responsible for the altered kinetic properties. Thus, two differentially charged forms of G6PDH were resolved by DEAE ion-exchange chromatography and, compared with controls, the proportion of G6PDH activity in peak I decreased and in peak II increased in liver from frozen frogs. G6PDH in peak I had a K m G6P of 94.1 ± 1.1 μM and K m NADP+ of 61.2 ± 3.5 μM, whereas Peak II G6PDH showed higher values (K m G6P was 172 ± 4.3 μM, K m NADP+ was 98.2 ± 3.3 μM). G6PDH from each peak was incubated with ions and second messengers to stimulate the actions of protein kinases with results indicating that G6PDH can be phosphorylated by protein kinase G, protein kinase C, AMP-activated protein kinase, or calmodulin-dependent protein kinase. The data indicate that in control frogs, G6PDH is in a high phosphate form and displays a high substrate affinity, whereas in frozen frogs G6PDH is less phosphorylated, with lower substrate affinity.  相似文献   

    18.
    19.
    Calcium uptake by normal human lymphocytes was found to be a saturable process which was competitively inhibited by manganese indicating the existence of a carrier-mediated mechanism for calcium uptake. Exchange diffusion was not observed, Phytohemagglutinin (PHA) significantly stimulated calcium uptake within minutes after treatment. The increased uptake was attributed to a decreased Km for the proposed membrane carrier rather than to an increased Vmax. Also PHA did not stimulate a normally unused exchange diffusion process, nor did it affect calcium efflux. Uptake by both unstimulated and PHA-treated lymphocytes was not influenced by magnesium or by cycloheximide or actinomycin D.  相似文献   

    20.
    The characteristics of carnosine (β-alanyl-l-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular > intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 ± 1.4 mM and a Vmax of 2.9 ± 0.2 nmol / mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-l-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号