首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A potent glycogenic effect of GLP-1(7-36)amide has been found in rat hepatocytes and skeletal muscle, and specific receptors for this peptide, which do not seem to be associated with the adenylate cyclase—cAMP system, have been detected in these tissue membranes. On the other hand, inositolphosphoglycan molecules (IPGs) have been implicated as second messengers of the action of insulin. In this work, we have found, in differentiated BC3H-1 myocytes, specific binding of [125I]GLP-1(7-36)amide, and a stimulatory effect of the peptide on glycogen synthesis, confirming the findings in rat skeletal muscle. Also, GLP-1(7-36)amide modulates the cell content of radiolabelled glycosylphosphatidylinositols (GPIs) and increases the production of diacylglycerol (DAG), in the same manner as insulin acts, indicating hydrolysis of GPIs and an immediate and short-lived generation of IPGs. Thus, IPGs and DAG could be mediators in the glycogenic action of GLP-1(7-36)amide in skeletal muscle.  相似文献   

2.
The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide.  相似文献   

3.
Glucagon-like peptide 1 (7-36) amide (GLP-1) and exendin-4 are gastrointestinal hormones as well as neuropeptides involved in glucose homeostasis and feeding regulation, both peripherally and at the central nervous system (CNS), acting through the same GLP-1 receptor. Aminergic neurotransmitters play a role in the modulation of feeding in the hypothalamus and we have previously found that peripheral hormones and neuropeptides, which are known to modulate feeding in the central nervous system, are able to modify catecholamine and serotonin release in the hypothalamus. In the present paper we have evaluated the effects of GLP-1 and exendin-4 on dopamine, norepinephrine, and serotonin release from rat hypothalamic synaptosomes, in vitro. We found that glucagon-like peptide 1 (7-36) amide and exendin-4 did not modify either basal or depolarization-induced dopamine and norepinephrine release; on the other hand glucagon-like peptide 1 (7-36) amide and exendin-4 stimulated serotonin release, in a dose dependent manner. We can conclude that the central anorectic effects of GLP-1 agonists could be partially mediated by increased serotonin release in the hypothalamus, leaving the catecholamine release unaffected.  相似文献   

4.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.  相似文献   

5.
Glucagon-like peptide-1(7-36)amide (tGLP-1) is an important insulin-releasing hormone of the enteroinsular axis which is secreted by endocrine L-cells of the small intestine following nutrient ingestion. The present study has evaluated tGLP-1 in the intestines of normal and diabetic animal models and estimated the proportion present in glycated form. Total immunoreactive tGLP-1 levels in the intestines of hyperglycaemic hydrocortisone-treated rats, streptozotocin-treated mice and ob/ob mice were similar to age-matched controls. Affinity chromatographic separation of glycated and non-glycated proteins in intestinal extracts followed by radioimmunoassay using a fully cross-reacting anti-serum demonstrated the presence of glycated tGLP-1 within the intestinal extracts of all control animals (approximately 19% of total tGLP-1 content). Chemically induced and spontaneous animal models of diabetes were found to possess significantly greater levels of glycated tGLP-1 than controls, corresponding to between 24--71% of the total content. These observations suggest that glycated tGLP-1 may be of physiological significance given that such N-terminal modification confers resistance to DPP IV inactivation and degradation, extending the very short half-life (<3 min) and bioactivity of the native peptide.  相似文献   

6.
益生菌生物药物是指通过口服表达药用多肽(蛋白)的重组益生菌活细胞达到治疗疾病的新型口服给药系统。为了构建一种能有效防治2型糖尿病的酵母生物药物,文章首先构建了酿酒酵母(S.cerevisiae)整合型表达载体pNK1-PGK,并且通过绿色荧光蛋白(GFP)证明其表达功能正常,利用该载体将10×GLP-1 (Glucagon-like peptide-1)基因转化到酿酒酵母INVSc1中,通过营养缺陷型和Western blotting成功筛选出表达10×GLP-1的长效促胰岛素降糖酵母(Long-acting GLP-1 hypoglycemic yeast, LHY)。该酵母生长迅速,外源基因10×GLP-1表达稳定,表达量达到1.56 mg/g细胞湿重。通过链脲佐菌素和高脂高糖饮食联合诱导的方法构建了2型糖尿病小鼠模型,用LHY对其进行口服灌胃治疗,证明LHY具有较好疗效,明显降低血糖水平。  相似文献   

7.
The gastrointestinal peptides glucagon-like peptide-1(7-36)amide (GLP-1) and amylin are currently being tested in clinical trials for the treatment of diabetes mellitus due to their effects in lowering blood glucose. Receptors for these polypeptides also exist in the lung and since polypeptides are known to modulate airway and pulmonary vascular tone, we investigated whether GLP-1 and amylin act similarly in the lung. We compared their effects with the well-known actions of calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP). Both GLP-1 and amylin induced a dose-dependent and time-reversible endothelial-dependent relaxation of preconstricted pulmonary artery rings. Amylin was approximately as strong as VIP and CGRP, GLP-1 however, was 2.3-fold less potent. GLP-1 as well as amylin also reduced the vascular tone in the isolated, perfused and ventilated rat lung. In contrast to their action on the pulmonary vasculature, neither GLP-1 nor amylin showed any effect on the tone of isolated preconstricted trachea rings. In conclusion, GLP-1 and amylin represent two additional peptides which may modulate pulmonary vascular tone.  相似文献   

8.
Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His(7)-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His(7)-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His(7)-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes.  相似文献   

9.
The insulinotropic hormone glucagon-like peptide-1 (GLP-1) is rapidly inactivated in the body. In order to improve its stability, we replaced the enzymatic hydrolyzation position Ala(8)with Gly and replaced Ala(30) with Cys firstly. Then the modified peptide was further PEGylated at thiol group of Cys(30). Biological activity studies showed that the resulting mPEG-MAL-Gly(8)-Cys(30)-GLP-1(7-36)-NH(2) exhibited long-lasting effect while maintaining moderate glucose-lowering activity.  相似文献   

10.
11.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

12.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

13.
Glucagon-like peptide-1 (GLP-1), a member of glucagon superfamily, is synthesized from a large precursor, preproglucagon, and has been postulated to be a novel incretin. Recently, it was reported that central administration of GLP-1 (7-36) amide decreased food intake in rats and chickens. Generally, the amino acid sequences of the glucagon superfamily members except for gastric inhibitory peptide and growth hormone-releasing factor are identical at N-terminal histidine. It is well known that the GLP-1 receptor is highly specific for GLP-1 and does not bind other peptides of the glucagon superfamily. The aim of this study was to elucidate whether central injection of substituted GLP-1 in which N-terminal histidine of mammalian GLP-1 (7-36) amide was replaced with tyrosine, inhibits food intake in the chick. Intracerebroventricular administration of substituted GLP-1 inhibits food intake in the chick, although the effect of substituted GLP-1 was 11 to 13 fold less than that of mammalian GLP-1 (7-36) amide. These results indicate that N-terminal histidine of GLP-1 (7-36) amide is important for efficacy, but not essential for its bioactivity.  相似文献   

14.
The aim of this study was to investigate the mechanisms involved in the effect of glucagon-like peptide-1 (GLP-1) on the decrease in gastric mucosal blood flow (GMBF) induced by intragastric ethanol.After preparation of the stomach for GMBF recording, a probe was placed to the gastric mucosa and basal GMBF recordings were obtained by a laser Doppler flowmeter after a 30-minute stabilization period. Following GLP-1 (1000 ng/kg; i.p.) injection, 1 ml of absolute ethanol was applied to the gastric chamber and GMBF was recorded continuously during a 30-minute period. GLP-1 (1000 ng/kg; i.p.) prevented the decrease in GMBF induced by ethanol. Nitric oxide (NO) synthase inhibitor L-NAME, (30 mg/kg; s.c.), calcitonine gene-related peptide (CGRP) receptor antagonist CGRP-(8–37) (10μg/kg; i.p.), and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) all inhibited the GMBF-improving effect of GLP-1.We concluded that, NO, CGRP and prostaglandins may be involved in the effect of peripherally-injected GLP-1 on GMBF reduction induced by intraluminal ethanol.  相似文献   

15.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

16.
17.
High-affinity binding sites for glucagon-like peptide-1 7-36 amide (GLP-1 7-36 NH2) were identified in rat brain and lung membranes. Binding of [125I]GLP-1 7-36 NH2 was rapid, reversible, specific, saturable and pH dependent. Specific binding in the central nervous system was particularly high in the hypothalamus and the brain stem. Oxyntomodulin, glucagon-like peptide-1, glucagon-like peptide-2 and glucagon were 100-1000-fold less potent than GLP-1 7-36 NH2 in competition for this binding site.  相似文献   

18.
Glucagon-like peptide-1(7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH(2)-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH(2)-terminally modified His(7)99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His(7)-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691+/-35 mM/min) was significantly lower after administration of tGLP-1 and His(7)-glucitol tGLP-1 (36 and 49% less; AUC 440+/-40 and 353+/-31 mM/min, respectively; P<0.01). This was associated with a significantly higher AUC for insulin (98-99% greater; AUC 834+/-46 and 838+/-39 ng/ml/min, respectively; P<0.01) after tGLP-1 and His(7)-glucitol tGLP-1 administration compared to controls (421+/-30 ng/ml/min). In conclusion, His(7)-glucitol tGLP-1 resists plasma DPP IV degradation while retaining potent antihyperglycaemic and insulin-releasing activities in vivo.  相似文献   

19.
R G?ke  B Oltmer  S P Sheikh  B G?ke 《FEBS letters》1992,300(3):232-236
Glucagon-like peptide-1 (7–36)amide (GLP-1 (7–36)amide) represents a physiologically important incretin in mammals including man. Receptors for GLP-1 (7–36)amide have been described in RINm5F cells. We have solubilized active GLP-1 (7–36)amide receptors from RINm5F cell membranes utilizing the detergents octyl-β-glucoside and CHAPS; Triton X-100 and Lubrol PX were ineffective. Binding of radiolabeled GLP-1(7–36)amide to the solubilized receptor was inhibited conentration-dependently by addition of unlabeled peptide. Scatchard analysis of binding data revealed a single class of binding sites with Ka= 0.26 ± 0.03 nM and Bmax= 65.4 ± 21.24 fmol/mg of protein for the membrane-bound receptor and Ka= 22.54 ± 4.42 μM and Bmax= 3.9 ± 0.79 pmol/mg of protein for the solubilized receptor. The binding of the radiolabel to the solubilized receptor was dependent both on the concentrations of mono- and divalent cations and the protein/detergent ratio in the incubation buffer. The membrane bound receptor is sensitive to guanine-nucleotides, however neither GTP-γ-S nor GDP-β-S affected binding or labeled peptide to solubilized receptor. These data indicate that the solubilized receptor may have lost association with its G-protein. In conclusion, the here presented protocol allows solubilization of the GLP-1(7–36)amide receptor in a functional state and opens up the possibility for further molecular characterization of the receptor protein.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important roles in insulin secretion through their receptors, GLP1R and GIPR. Although GLP-1 and GIP are attractive candidates for treatment of type 2 diabetes and obesity, little is known regarding the molecular interaction of these peptides with the heptahelical core domain of their receptors. These core domains are important not only for specific ligand binding but also for ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R/GIPR, we determined that evolutionarily conserved amino acid residues such as Ile(196) at transmembrane helix 2, Leu(232) and Met(233) at extracellular loop 1, and Asn(302) at extracellular loop 2 of GLP1R are responsible for interaction with ligand and receptor activation. Application of chimeric GLP-1/GIP peptides together with molecular modeling suggests that His(1) of GLP-1 interacts with Asn(302) of GLP1R and that Thr(7) of GLP-1 has close contact with a binding pocket formed by Ile(196), Leu(232), and Met(233) of GLP1R. This study may provide critical clues for the development of peptide and/or nonpeptide agonists acting at GLP1R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号