首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The shear-induced intracellular signal transduction pathway invascular endothelial cells involves tyrosine phosphorylation andactivation of mitogen-activated protein (MAP) kinase, which may beresponsible for the sustained release of nitric oxide. MAP kinase isknown to be activated by reactive oxygen species (ROS), such asH2O2,in several cell types. ROS production in ligand-stimulatednonphagocytic cells appears to require the participation of aRas-related small GTP-binding protein, Rac1. We hypothesized that Rac1might serve as a mediator for the effect of shear stress on MAP kinaseactivation. Exposure of bovine aortic endothelial cells to laminarshear stress of 20 dyn/cm2 for5-30 min stimulated total cellular and cytosolic tyrosine phosphorylation as well as tyrosine phosphorylation of MAP kinase. Treating endothelial cells with the antioxidantsN-acetylcysteine and pyrrolidinedithiocarbamate inhibited in a dose-dependent manner theshear-stimulated increase in total cytosolic and, specifically, MAPkinase tyrosine phosphorylation. Hence, the onset of shear stresscaused an enhanced generation of intracellular ROS, as evidenced by anoxidized protein detection kit, which were required for theshear-induced total cellular and MAP kinase tyrosine phosphorylation. Total cellular and MAP kinase tyrosine phosphorylation was completely blocked in sheared bovine aortic endothelial cells expressing adominant negative Rac1 gene product (N17rac1). We concluded that theGTPase Rac1 mediates the shear-induced tyrosine phosphorylation of MAPkinase via regulation of the flow-dependent redox changes inendothelial cells in physiological and pathological circumstances.  相似文献   

3.
In further exploring proposals for the measurement of early gene (c-fos mRNA) levels as a predictive index for in vitro excitotoxicity, this study, using immature (2 days in vitro) cultures of mouse cerebellar granule cells as an experimental model system, was undertaken to determine the effect of glutamate (Glu) i) in stimulating increases in intracellular free-calcium ([Ca2+]i), ii) on cell viability and iii) on induction of steady-state c-fos mRNA levels. In parallel experiments the action of agents (viz. 55 mM KCl and the calcium ionophore, A23187) that mediate Ca2+ entry into cells via different routes was also evaluated. Glu was unable to induce excitotoxicity in granule cells at this stage of development in culture, but did stimulate a concentration-dependent and marked increase in [Ca2+]i levels while also mediating a dramatic concentration-dependent perturbation in the kinetics of c-fos mRNA induction that appeared to arise solely from NMDA receptor-mediated Ca2+ influx. The results are presented in comparison to the actions of KCl and A23187 and considered in relation to earlier studies undertaken using mature (7 days in vitro) cultures of cerebellar granule cells.  相似文献   

4.
Bombesin is a potent mitogen for Swiss 3T3 cells and can stimulate DNA synthesis in the absence of any other growth factor. This effect is mediated by multiple synergistic signaling pathways, including an accumulation of intracellular cyclic AMP (cAMP) and an increase in c-fos mRNA expression. The cyclooxygenase inhibitor indomethacin abolished prostaglandin E2 release and substantially depressed cAMP levels induced by bombesin (EC50 - 10 nM). In contrast, indomethacin at 1 μM did not affect 80K phosphorylation or Ca2+ mobilization by bombesin, indicating that cAMP synthesis can occur through a phospholipase C-independent pathway. Indomethacin caused a 30 to 35% decrease in c-fos induction and DNA synthesis in cells treated with bombesin (EC50 - 40 nM). Significantly, the inhibitory effect of indomethacin was reversed in the presence of forskolin, a direct activator of adenylate cyclase. We conclude that cAMP plays a regulatory role in c-fos induction and mitogenesis in Swiss 3T3 cells treated with bombesin.  相似文献   

5.
6.
Remodeling of endothelial basement membrane is important in atherogenesis. Since little is known about the actual relationship between type IV collagen and matrix metalloprotease−2 (MMP-2) in endothelial cells (ECs) under shear stress by blood flow, we performed quantitative analysis for type IV collagen and MMP-2 in ECs under high shear stress. The mRNA of type IV collagen from ECs exposed to high shear stress (10 and 30 dyn/cm2) had a higher expression compared to ECs exposed to a static condition or low shear stress (3 dyn/cm2) (P < 0.01). 3H-proline uptake analysis and fluorography revealed a remarkable increase of type IV collagen under high shear stress (P < 0.01). In contrast, zymography revealed that exposing to high shear stress, however similar positivity was leveled in the intracellular MMP-2 in the control and high shear stress-exposed ECs, reduced the secretion of MMP-2 in ECs. The results of Northern blotting, gelatin zymography and monitoring the intracellular trafficking of GFP-labeled MMP-2 revealed that MMP-2 secretion by ECs was completely suppressed by high shear stress, but the intracellular mRNA expression, protein synthesis, and transport of MMP-2 were not affected. In conclusion, we suggest that high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in ECs, which plays an important role in remodeling of the endothelial basement membrane and may suppress atherogenesis.  相似文献   

7.
亚硝酸盐胁迫对罗氏沼虾血细胞及其抗氧化酶活力的影响   总被引:2,自引:0,他引:2  
【背景】亚硝酸盐是虾类集约化养殖过程中最常见的毒性污染物之一,研究亚硝酸盐胁迫对罗氏沼虾血细胞的毒性以及抗氧化酶在抗胁迫防御中的作用,能够为罗氏沼虾养殖过程中的亚硝酸盐中毒防治提供理论参考。【方法】以不同浓度(0、1、5和10 mg·L~(-1))的亚硝态氮(NO_2~--N)对罗氏沼虾进行胁迫,于胁迫后的0、6、12、24和48 h取样,应用流式细胞术检测血细胞活性氧(ROS)含量和细胞凋亡率,同时测定血细胞总数(THC)和胞内抗氧化酶活力。【结果】1 mg·L~(-1)NO_2~--N在48 h内对血细胞ROS含量、凋亡率和THC均无显著影响。5 mg·L~(-1)NO_2~--N胁迫24 h,血细胞ROS含量显著上升,THC显著下降,胁迫48 h凋亡率显著提高。10 mg·L~(-1)NO_2~--N胁迫6 h,血细胞ROS含量和凋亡率均显著上升,胁迫12 h THC显著下降。血细胞的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx)的活力均不同程度地被NO_2~--N胁迫所诱导,CAT活力主要在胁迫前期提高,而GPx活力在胁迫后期提高。【结论与意义】亚硝酸盐存在浓度和时间毒性效应,一定浓度的亚硝酸盐会诱导虾血细胞产生ROS,这些ROS的过量产生诱导了血细胞发生凋亡,继而导致THC下降,这一氧化胁迫过程可能是亚硝酸盐对罗氏沼虾产生细胞毒性的重要机制之一。抗氧化酶活力的诱导表明抗氧化酶在亚硝酸盐胁迫过程中发挥防御作用。  相似文献   

8.
Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H2O2, HO, ROO. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm.  相似文献   

9.
10.
Summary 1. The aim of this study was to investigate the neurochemical effects and measure the anatomical spread of infusion of c-fos antisense (AS) DNA into the striatum.2. Rats were anesthetized and infused in opposing striata with c-fos AS and c-fos sense (S) DNA. Ten hours later they were injected with apomorphine (2 mg/kg, i.p.) and 20 min later they were overdosed with sodium pentobarbital and their brains either perfused or frozen. Vibratome-cut sections were immunostained for the detection of c-fos, JunB, Krox 24, somatostatin, substance P, dynorphin, tyrosine hydroxylase, and enkephalin. Cryostat-cut sections from the caudate were immunostained for the detection of c-fos, JunB, and Krox 24, as well asin situ hybridization for proenkephalin mRNA. Sections from the globus pallidus were used for the autoradiographic localization of D2 dopamine and A2a adenosine receptors. Sections from the substantia nigra were used for the autoradiographic localization of D1 dopamine and cannabinoid receptors. A second group of rats was injected in opposing striata with biotin-labeled c-fos AS DNA and c-fos S DNA. Ten hours later they were challenged with apomorphine (2 mg/kg, i.p.) and 20 min later brains were either perfused or frozen. Sections from these brains were cut throughout the rostral-caudal extent of the forebrain and the biotin labeled AS DNA was localized.3. Krox 24 was expressed at high levels on the sense side of the brain in the striatum and overlying neocortex. However, on the AS-injected side there was a reduction in Krox 24 expression in striatum and overlying cortex. The biotin-labeled AS studies confirmed that the striatal infusion spread throughout the dorsal striatum as well as the overlying neocortex. We did not detect any changes in neurotransmitter receptors, neuropeptides, or tyrosine hydroxylase in AS/S-injected rat brains.4. These results demonstrate that c-fos AS reduces Krox 24 expression in striatal and neocortical neurons but does not change the expression of a number of other proteins involved in basal ganglia function. Whether this effect is due to nonspecific actions of c-fos AS or to its effects on a component of the transduction pathway responsible for basal Krox 24 expression (NMDA receptors?) is unknown.  相似文献   

11.
Chronic UVA irradiation has been reported to induce photoaging and photocarcinogenesis. UVA is a potent inducer of reactive oxygen species (ROS), which can induce various biological processes, including apoptosis. Polypeptide from Chlamys farreri (PCF) is a novel marine active material isolated from the gonochoric Chinese scallop C. farreri. In our previous studies, PCF was found to be an effective antioxidant inhibiting UVA-induced ROS production and a potential inhibitory agent for UVA-induced apoptosis in the human keratinocyte cell line HaCaT. The intracellular mechanisms of how PCF protects HaCaT cells from UVA-induced apoptosis are not understood. Thus, we here investigate the effect of PCF on UVA-induced intracellular signaling of apoptosis. Pretreatment with the ROS scavenger N-acetylcysteine (NAC), the p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor Ac-DEVD-CHO was found to effectively prevent UVA-induced apoptosis, indicating that ROS, p38 MAPK and caspase-3 play important roles in apoptosis. H2O2-induced apoptosis was attenuated by PCF, suggesting that PCF plays its anti-apoptotic role through its antioxidant activity. In addition, PCF treatment inhibited UVA-induced p38 MAPK activation and caspase-3 activation, as assayed by Western blot analysis and flow cytometry, respectively. Our results suggest that PCF attenuates UVA-induced apoptosis through a reduction of ROS generation and diminished p38 MAPK and caspase-3 activation.  相似文献   

12.
Vascular endothelial cells (ECs) respond to temporal and spatial characteristics of hemodynamic forces by alterations in their adhesiveness to leukocytes, secretion of vasodilators, and permeability to blood-borne constituents. These physiological and pathophysiological changes are tied to adaptation of cell mechanics and mechanotransduction, the process by which cells convert forces to intracellular biochemical signals. The exact time scales of these mechanical adaptations, however, remain unknown. We used particle-tracking microrheology to study adaptive changes in intracellular mechanics in response to a step change in fluid shear stress, which simulates both rapid temporal and steady features of hemodynamic forces. Results indicate that ECs become significantly more compliant as early as 30 s after a step change in shear stress from 0 to 10 dyn/cm2 followed by recovery of viscoelastic parameters within 4 min of shearing, even though shear stress was maintained. After ECs were sheared for 5 min, return of shear stress to 0 dyn/cm2 in a stepwise manner did not result in any further rheological adaptation. Average vesicle displacements were used to determine time-dependent cell deformation and macrorheological parameters by fitting creep function to a linear viscoelastic liquid model. Characteristic time and magnitude for shear-induced deformation were 3 s and 50 nm, respectively. We conclude that ECs rapidly adapt their mechanical properties in response to shear stress, and we provide the first macrorheological parameters for time-dependent deformations of ECs to a physiological forcing function. Such studies provide insight into pathologies such as atherosclerosis, which may find their origins in EC mechanics. viscoelasticity; atherosclerosis; cell mechanics; particle tracking; mechanotransduction  相似文献   

13.
Osteoblasts subjected to fluid shearincrease the expression of the early response gene, c-fos, andthe inducible isoform of cyclooxygenase, COX-2, two proteins linked tothe anabolic response of bone to mechanical stimulation, in vivo. Theseincreases in gene expression are dependent on shear-induced actinstress fiber formation. Here, we demonstrate that MC3T3-E1osteoblast-like cells respond to shear with a rapid increase inintracellular Ca2+ concentration([Ca2+]i) that wepostulate is important to subsequent cellular responses to shear. Totest this hypothesis, MC3T3-E1 cells were grown on glass slides coatedwith fibronectin and subjected to laminar fluid flow (12 dyn/cm2). Before application of shear, cells were treatedwith two Ca2+ channel inhibitors or various blockers ofintracellular Ca2+ release for 0.5-1 h. Althoughgadolinium, a mechanosensitive channel blocker, significantly reducedthe [Ca2+]i response, neithergadolinium nor nifedipine, an L-type channel Ca2+ channelblocker, were able to block shear-induced stress fiber formation andincrease in c-fos and COX-2 in MC3T3-E1 cells. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid-AM, an intracellular Ca2+ chelator, or thapsigargin,which empties intracellular Ca2+ stores, completelyinhibited stress fiber formation and c-fos/COX-2 production in shearedosteoblasts. Neomycin or U-73122 inhibition of phospholipase C, whichmediates D-myo-inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release, alsocompletely suppressed actin reorganization and c-fos/COX-2 production.Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform ofU-73122, did not inhibit these shear-induced responses. These resultssuggest that IP3-mediated intracellular Ca2+release is required for modulating flow-induced responses in MC3T3-E1 cells.

  相似文献   

14.
The endothelial cell barrier is tightly regulated, and disruption or the leaky behavior of the barrier leads to pathology. Disturbance of blood-brain barrier is observed during viral infection, cerebral malaria, and acute hemorrhagic encephalitis. Red blood cells (RBCs) bind to the endothelial cells (ECs) and their affinity towards ECs enhances in the presence of Plasmodium falciparum infection. ECs stimulated with methemoglobin (MetHb; 20 µM) for 1 hour exhibit high levels of cyto-adherence receptors CD36 and ICAM-1 on their cell surface compared with unstimulated cells. These ECs have acquired affinity towards uninfected RBCs in flow at arterial shear stress. SEM analysis indicates that EC–RBC cyto-adherence involved multiple attachment points. Initially, ECs bind single layer of RBCs and the number of RBCs increases over time to give high-order cyto-adherence with more than 30 RBCs adhered to each endothelial cell. The cyto-adherence complexes are stable to high shear stress and can withstand shear stress up to 450 dyne/cm 2. MetHb-treated ECs exhibited high reactive oxygen species level, and preincubation of ECs with antioxidant (NAC or mannitol) abolished the formation of EC–RBC cyto-adherence complexes. In addition, gallic acid (present in red wine) and green tea extract has inhibited the formation of EC–RBC cyto-adherence complex. A better understanding of gallic acid and tea polyphenol targeting pathological cyto-adherence may allow us to develop a better adjuvant therapy for cerebral malaria and other noninfectious diseases.  相似文献   

15.
Summary To better understand possible autocrine or paracrine mechanisms involved in adipose tissue development, we have studied the biosynthesis of insulinlike growth factor I (IGF-I) and prostaglandin E2 (PGE2) by cultured porcine preadipocytes in response to factors known to modulate cell growth and differentiation. The expression of c-fos was also monitored because of the potential role of that proto-oncogene in coordination of growth and differentiation. Preadipocytes were grown to confluence and then maintained in one of three media treatments: a) standard medium supplemented with 10% fetal bovine serum (FBS), b) FBS supplemented with dexamethasone (Dex), c) FBS supplemented with dibutryladenosine 3′–5′-cyclic monophosphate. Indirect measurements of growth indicated that cell proliferation did not differ due to media type. Histochemical and enzymatic measurements of adipocyte development revealed that differentiation occurred only in those cultures exposed to Dex. The increase in adipocyte differentiation in response to Dex was associated with a decrease in c-fos and actin RNA expression whereas the decrease in c-fos RNA expression in response to Dex was small (approximately 40%); immunocytochemical analysis indicated that induction of Fos protein occurred only in undifferentiated cells. Thus, the cells responsible for the decrease in c-fos RNA expression are possibly those signaled to differentiate into adipocytes. Expression of IGF-I RNA and secretion of IGF-I and PGE2 were also decreased in response to Dex treatment. These data provide the first demonstration that biosynthesis of IGF-I by preadipocytes can be modulated by a potent inducer of adipocyte differentiation. The combined results indicate that glucocorticoids may stimulate adipocyte differentiation by suppressing intracellular and putative intercellular mitogenic signals. This work was supported in part by grant HD 18447 from the National Institutes of Health, Bethesda, MD (G. J. H.). Mention of a trade mark, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U. S. Department of Agriculture or University of Georgia and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

16.
There is evidence that nitric oxide (NO), superoxide (O2), and their associated reactive nitrogen species (RNS) produced by vascular endothelial cells (ECs) in response to hemodynamic forces play a role in cell signaling. NO is known to impair mitochondrial respiration. We sought to determine whether exposure of human umbilical vein ECs (HUVECs) to steady laminar shear stress and the resultant NO production modulate electron transport chain (ETC) enzymatic activities. The activities of respiratory complexes I, II/III, and IV were dependent on the presence of serum and growth factor supplement in the medium. EC exposure to steady laminar shear stress (10 dyn/cm2) resulted in a gradual inhibition of each of the complexes starting as early as 5 min from the flow onset and lasting up to 16 h. Ramp flow resulted in inhibition of the complexes similar to that of step flow. When ECs were sheared in the presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 µM), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; 100 µM), or the peroxynitrite (ONOO) scavenger uric acid (UA; 50 µM), the flow-inhibitory effect on mitochondrial complexes was attenuated. In particular, L-NAME and UA abolished the flow effect on complex IV. Increased tyrosine nitration was observed in the mitochondria of sheared ECs, and UA blocked the shear-induced nitrotyrosine staining. In summary, shear stress induces mitochondrial RNS formation that inhibits the electron flux of the ETC at multiple sites. This may be a critical mechanism by which shear stress modulates EC signaling and function. oxidative stress; mitochondria; endothelium  相似文献   

17.
It has been documented that medical prosthetic alloys release metal ions into surrounding tissues and cause cytotoxicity, but the mechanisms remain undefined. In that regard the cellular oxidative stress may be a common pathway in cellular responses to metal ions. The objective of this study was to approach the hypothesis that oxidative stress mediates chromium-induced cytotoxicity in rat calvarial osteoblasts. Osteoblasts were exposed to different concentrations of Cr6+ or Cr3+ (5–20 μM) in the presence or absence of the antioxidant N-acetyl-cysteine (NAC; 1–5 mM). Cellular viability, differentiation, and intracellular ultrastructural alterations were evaluated by MTT assay, alkaline phosphatase (ALP) activity assay, and transmission electron microscopy. Cellular oxidative stress was evaluated by intracellular reactive oxygen species (ROS) production. ROS production was monitored by the oxidation-sensitive fluorescent probe 2′7′-dichlorofluorescin diacetate (DCFH-DA). A time- and concentration- dependent increased cytotoxicity, time-dependent increased intracellular ROS production were indicated on exposure to Cr6+. Pretreatment of osteoblasts with 1–5 mM NAC afforded dose-dependent cytoprotective effects against Cr6+-induced cytotoxicity in osteoblasts. NAC decreased the level of intracellular ROS induced by Cr6+, too. While Cr3+ and NAC did not have any significant effects on osteoblasts (5–20 μM). These results suggest that oxidative stress is involved in Cr6+-induced cytotoxicity in osteoblasts, and NAC can provide protection for osteoblasts against Cr6+-induced oxidative stress. Cr3+ (5–20 μM) have no significant cytotoxicity in osteoblasts based on the results of this study.  相似文献   

18.
Ischemia (I)/reperfusion (RP)-induced endothelial cell (EC) injury is thought to be due to mitochondrial reactive oxygen species (mtROS) production. MtROS have been implicated in mitochondrial fission. We determined whether cultured EC exposure to simulated I/RP causes morphological changes in the mitochondrial network and the mechanisms behind those changes. Because shear stress results in nitric oxide (NO)-mediated endothelial mtROS generation, we simulated I/RP as hypoxia (H) followed by oxygenated flow over the ECs (shear stress of 10dyn/cm(2)). By exposing ECs to shear stress, H, H/reoxygenation (RO), or simulated I/RP and employing MitoTracker staining, we assessed the differential effects of changes in mechanical forces and/or O(2) levels on the mitochondrial network. Static or sheared ECs maintained their mitochondrial network. H- or H/RO-exposed ECs underwent changes, but mitochondrial fission was significantly less compared to that in ECs exposed to I/RP. I/RP-induced fission was partially inhibited by antioxidants, a NO synthase inhibitor, or an inhibitor of the fission protein dynamin-related protein 1 (Drp1) and was accompanied by Drp1 oligomerization and phosphorylation (Ser616). Hence, shear-induced NO, ROS (including mtROS), and Drp1 activation are responsible for mitochondrial fission in I/RP-exposed ECs, and excessive fission may be an underlying cause of EC dysfunction in postischemic hearts.  相似文献   

19.
We evaluated the involvement of nitric oxide (NO) in salicylic acid (SA)-induced accumulation of ginsenoside in adventitious roots of Panax ginseng and its mediation by reactive oxygen species (ROS). Related effects of SA on components of the antioxidant system were also sought. Adventitious roots of P. ginseng were grown in suspension culture for 3 weeks in MS medium and treated over 5 days with SA (100 μM) alone, SA in combination with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), or PTIO alone. Nitric oxide, the superoxide anion (O2·−), H2O2, nitrite, nonprotein thiol, and ascorbate were monitored together with ginsenoside, NADPH oxidase activity, and several antioxidant enzymes. Salicylic acid did not inhibit root growth but induced accumulation of ginsenoside, lipid peroxidation, and generation of NO and O2·−. It also enhanced activities of NADPH oxidase, superoxide dismutase, catalase, and peroxidase, including ascorbate peroxidase. These effects were suppressed by PTIO. Salicylic acid also decreased glutathione reductase activity. Inclusion of PTIO with SA decreased the activity of glutathione reductase further. Treatment with SA plus PTIO also decreased nonprotein thiol and ascorbate contents but caused nitrite to overaccumulate. Salicylic acid applied to adventitious roots in culture induced accumulation of ginsenoside in an NO-dependent manner that was mediated by the associated increases in O2·−, which gave other antioxidant responses that were dependent on NO.  相似文献   

20.
Summary 1. Amphetamine-induced c-fos andegr-1 expression in the striatum was used as a model in which to study the effects of antisense oligodeoxynucleotides (ODNs) directed at c-fos. Using direct infusions of ODNs into the striata of animals we have demonstrated that c-fos antisense ODNs retain most of their biological activity with 2- or 3-base substitutions. The c-fos antisense and mismatch ODNs attenuated Fos immunoreactivity but had little effect on Egr-1 immunoreactivity.2. In another group of studies examining the role of c-fos in amygdala kindling, we have demonstrated that ODNs cause neurotoxic damage following repeated daily infusions into the amygdala. The damage observed was greatly diminished when the time interval between infusions was extended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号