首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We studied the postulated involvement of the protein kinase C β1 (PKCβ1) isoform in the regulation of endothelial permeability using human dermal microvascular endothelial cell line (HMEC-1). We overexpressed the recombinant PKCβ1 gene via retroviral-mediated transduction in these cells. PKCβ1 gene transfer was stable, and PKCβ1 protein production was persistent for at least 1 month posttransduction. Addition of 2 × 10−9 M and 2 × 10−8 M phorbol 12-myristate 13-acetate (PMA) to the control (nontransduced) HMEC-1 cells increased the transendothelial 125I-albumin clearance rate (an index of endothelial permeability) from 2.5 ± 0.2 × 10−2 μl/min to 5.4 ± 1.2 × 10−2 μl/min and 16.8 ± 3.1 × 10−2 μl/min, respectively. However, addition of 2 × 10−9 M PMA to PKCβ1-overexpressing HMEC-1 cells produced a maximal increase in the transendothelial 125I-albumin clearance rate of 15.9 ± 2.0 × 10−2 μl/min. Challenge of these cells with 2 × 10 −8 M PMA did not further augment the increase in permeability. Activation with PMA was associated with the translocation of the PKCβ1 from the cytosol to the membrane. These data show that PKCβ1 overexpression augments the increase in endothelial permeability in response to PKC activation, suggesting an important function for the PKCβ1 isoform in the regulation of endothelial barrier. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The effects of parathyroid hormone (PTH) on 1,4,5-inositol triphosphate (1,4,5-IP3) and intracellular free calcium (Cai2+) in osteoblasts are variable, whereas adenylate cyclase activity is consistently stimulated. Cyclic AMP is considered a mediator in the contractile effects of PTH on osteoblasts, but the regulation and role of Cai2+ remains unclear. Recent studies indicate that protein kinase C (PKC) inhibits PTH-stimulated Cai2+ increases in osteoblastic cells. Therefore, the objectives of this study were to determine the effects of PKC modulators and PTH on UMR 106-H5 rat osteoblastic cell morphology, and the relationship between cell shape and PTH-induced Cai2+ changes. In suspended cells loaded with the calcium indicator dye fura-2, pretreatment with PKC inhibitors calphostin C (100 nM × 1 h) and H-7 (30 μM × 18 h) potentiated the effects of 1 μg/ml bPTH(1–84) on Cai2+ (83% increase over basal) by 1.4- and 1.65-fold, respectively. In comparison, PTH (10 ng-1 μg/ml) was without significant effect on adherent cell Cai2+ as measured by single-cell image analysis, although another in vitro bone resorbing agent, thrombin (10 U/ml), produced an acute 3-fold increase in the ratio (R) of emission (∼ λ510 nm) detected and optimized at λ348/374 nm (i.e., Ca-bound dye/free dye) in control cells. Phase-contrast microscopy revealed PKC inhibitor-treated cells changed from a spread configuration to a stellate form with retracting processes or cell rounding and a collapse of actin stress fibers. Within 1 h of PTH addition, PKC inhibitor-treated cells continually became extended/respread up to 3 h with an associated increase in actin stress fibers that was preceded by an acute 1.6-fold Cai2+ increase. In contrast, control or PKC activator-treated cells (phorbol 12,13-dibutyrate or 12-O-tetradecanoylphorbol-13-acetate; TPA) contracted/retracted within 5 min in response to PTH. A role for Cai2+ in PTH-induced cell spreading was further indicated by a contractile response to PTH when PKC-inhibitor-treated cells were loaded with the intracellular calcium chelator dimethyl BAPTA (3 μM × 30 min). PTH-induced Cai2+ increases in adherent PKC inhibitor-treated cells were also associated with a 1.8-fold 1,4,5-IP3 increase as measured by mass assay. The data suggest PKC contributes to UMR 106-H5 cell morphology and selectively regulates signal pathways activated by PTH to promote either cell contraction (cAMP) or extension (1,4,5-IP3/Cai2+). J. Cell. Biochem. 65:276–285. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Effect of P2Y Agonists on Adenosine Transport in Cultured Chromaffin Cells   总被引:1,自引:0,他引:1  
Abstract: Adenosine transport in cultured chromaffin cells was inhibited by purinergic P2y-receptor agonists without significant changes in the affinity constant, the values being between 1 ± 0.4 and 1.6 ± 0.6 μM. The Vmax parameter was modified significantly, being 40 ± 1.0, 26 ± 5.0, 32 ± 3.0, and 22 ± 4.7 pmol/106 cells/min for control, adenosine-5′-O-(2-thiodiphosphate), 5′-adenylylimidodiphosphate, and P1,P4-di(adenosine-5′-) tetraphosphate (Ap4A) (100 μM for every effector), respectively. Ap4A, a physiological ligand for P2y receptors in chromaffin cells, showed the highest inhibitory effect (45%). This transport inhibition is explained by an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the activation of protein kinase C (PKC). Experiments of [Ca2+]i measurement with the fura-2 technique showed that P2y agonists, as well as bradykinin, were able to increase [Ca2+]i, this effect being independent of the presence of extracellular Ca2+. The peptide bradykinin, determined to be coupled to phosphatidylinositol hydrolysis and internal Ca2+ mobilization in chromaffin cells, exhibited a behavior similar to that of P2y agonists in adenosine transport inhibition (39%). P2y agonists and bradykinin increased PKC activity associated with the membrane fraction (about 50% increase in particulate PKC activity with respect to controls). The present studies suggest that adenosine transport is regulated by P2y-purinergic receptors mediated via Ca2+ mobilization and PKC activation.  相似文献   

4.
Extracellular ATP elicits transient elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in osteoblasts through interaction with more than one subtype of cell surface P2-purinoceptor. Elevation of [Ca2+]i arises, at least in part, by release of Ca2+ from intracellular stores. In the present study, we investigated the possible roles of protein kinase C (PKC) in regulating these signaling pathways. [Ca2+]i of indo-1-loaded UMR-106 osteoblastic cells was monitored by spectrofluorimetry. In the absence of extracellular Ca2+, ATP (100 μM) induced transient elevation of [Ca2+]i to a peak 57 ± 7 nM above basal levels (31 ± 2 nM, means ± S. E. M., n = 25). Exposure of cells to the PKC activator 12-O-tetradecanoyl-β-phorbol 13-acetate (TPA, 100 nM) for 2 min significantly reduced the amplitude of the ATP response to 13 ± 4 nM (n = 11), without altering basal [Ca2+]i. Inhibition was half-maximal at approximately 1 nM TPA. The Ca2+ response to ATP was also inhibited by the PKC activators 1,2-dioctanoyl-sn-glycerol or 4β-phorbol 12, 13-dibutyrate, but not by the control compounds 4α-phorbol or 4α-phorbol 12, 13-didecanoate. Furthermore, exposure of cells to the protein kinase inhibitors H-7 or staurosporine for 10 min significantly attenuated the inhibitory effect of TPA. However, these protein kinase inhibitors did not prolong the [Ca2+]i response to ATP alone, indicating that activation of PKC does not account for the transient nature of this response. When the effects of other nucleotides were examined, TPA was found to cause significantly greater inhibition of the response to the P2Y-receptor agonists, ADP and 2-methylthioATP, than the response to the P2U-receptor agonist, UTP. These data indicate that activation of PKC selectively inhibits the P2Y signaling pathway in osteoblastic cells. In vivo, endocrine or paracrine factors, acting through PKC, may regulate the responsiveness of osteoblasts to extracellular nucleotides. © 1995 Wiley-Liss, Inc.  相似文献   

5.
To determine if calcium-dependent secretagogues directly act on epithelial cells to elicit CI secretion, their effects on CI transport and intracellular Ca2+ concentrations ([Ca2+]i) were determined in primary cultures of rabbit distal colonic crypt cells. The Cl sensitive fluorescent probe, 6-methoxyquinolyl acetoethyl ester, MQAE and the Ca2+-sensitive fluorescent probe, fura-2AM were used to assess Cl transport and [Ca2+]i, respectively. Basal Cl transport (0.274 ± 0.09 mM/sec) was inhibited significantly by the Cl channel blocker diphenylamine-2-carboxylate (DPC, 50 μM, 0.068 ± 0.02 mM/sec; P < 0.001) and the Na+/K+/2Cl cotransport inhibitor furosemide (1 μM, 0.137 ± 0.04 mM/sec; P < 0.01). Ion substitution studies using different halides revealed the basal influx to be I > F ≥ Cl > Br. DPC inhibited I influx by ∼50%, F influx by 80%, Cl influx by 85%, and Br influx by 90%. Furosemide significantly inhibited influx of Br (84%) and Cl (81%) but not of F and I. The effects of agents known to alter biological response by increasing [Ca2+]i in other epithelial systems were used to stimulate Cl transport. Cl influx in mM/second was stimulated by 1 μM histamine (0.58 ± 0.05), 10 μM neurotensin (2.07 ± 0.32), 1 μM serotonin (1.63 ± 0.28), and 0.1 μM of the Ca2+ ionophore A23187 (2.05 ± 0.40). The Cl permeability stimulated by neurotensin, serotonin, and A23187 was partially blocked by DPC or furosemide added alone or in combination. Histamine-induced Cl influx was significantly inhibited by only furosemide. Indomethacin blocked histamine-stimulated Cl permeability but had no effect on the actions of the other agents. These studies, focusing on isolated colonocytes without the contribution of submucosal elements, reveal that (1) histamine stimulates Cl transport by activating the Na+/K+/2Cl cotransporter via a cyclooxygenase-dependent pathway; (2) neurotensin, serotonin, and A23187 activate both Cl channels and the cotransporter, and their actions are cyclooxygenase-independent. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Drug‐protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2‐adrenoceptor (β 2AR) by linkage of the receptor on macroporous silica gel surface through N ,N ′‐carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site‐directed molecular docking. Subsequent application of immobilized β 2AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount–dependent method. The association constants of protopine to β 2AR by the 2 methods were (1.00 ± 0.06) × 105M−1 and (1.52 ± 0.14) × 104M−1. The numbers of binding sites were (1.23 ± 0.07) × 10−7M and (9.09 ± 0.06) × 10−7M, respectively. These results indicated that β 2AR is the specific target for therapeutic action of protopine in vivo. The target‐drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount–dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high‐throughput drug‐receptor interaction analysis.  相似文献   

7.
Endothelial cell (EC) contraction results in intercellular gap formation and loss of the selective vascular barrier to circulating macromolecules. We tested the hypothesis that phosphorylation of regulatory myosin light chains (MLC) by Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) is critical to EC barrier dysfunction elicited by thrombin. Thrombin stimulated a rapid (<15 sec) increase in [Ca2+]i which preceded maximal MLC phosphorylation (60 sec) with a 6 to 8-fold increase above constitutive levels of phosphorylated MLC. Dramatic cellular shape changes indicative of contraction and gap formation were observed at 5 min with maximal increases in albumin permeability occurring by 10 min. Neither the Ca2+ ionophore, A23187, nor phorbol myristate acetate (PMA), a direct activator of protein kinase C (PKC), alone or in combination, produced MLC phosphorylation. The combination was synergistic, however, in stimulating EC contraction/gap formation and barrier dysfunction (3 to 4-fold increase). Down-regulation or inhibition of PKC activity attenuated thrombin-induced MLC phosphorylation (~40% inhibition) and both thrombin- and PMA-induced albumin clearance (~50% inhibition). Agents which augmented [cAMP]i partially blocked thrombin-induced MLC phosphorylation (~50%) and completely inhibited both thrombin- and PMA-induced EC permeability (100% inhibition). Furthermore, cAMP produced significant reduction in the basal levels of constitutive MLC phosphorylation. Finally, MLCK inhibition (with either ML-7 or KT 5926) or Ca2+/calmodulin antagonism (with either trifluoperazine or W-7) attenuated thrombin-induced MLC phosphorylation and barrier dysfunction. These results suggest a model wherein EC contractile events, gap formation and barrier dysfunction occur via MLCK-dependent and independent mechanisms and are significantly modulated by both PKC and cAMP-dependent protein kinase A activities. © 1995 Wiley-Liss, Inc.  相似文献   

8.
[22,23-3H2]dihydroazadirachtin was incorporated by Sf9 cells in culture and was bound specifically to the nuclear fraction. The observed association constant of the binding of the radioligand to a purified nuclear fraction was determined to be 0.037 ± 0.008 min 1 using a one-phase exponential association equation, and binding appeared to be to a single population of sites. The binding was essentially irreversible, and the dissociation constant was estimated to be 0.00065 ± 0.00013 min 1. An association rate constant of 7.3 × 106 M 1 min 1 was calculated from these data. Binding was saturable, and the receptor number and affinity were determined as Bmax = 23.87 ± 1.15 pmol/mg protein, Kd = 18.1 ± 2.1 nM. The order of potency of semisynthetic azadirachtin analogues for competition for the binding site was as follows (IC30 in parentheses): azadirachtin (1.55 × 10−8 M) > dihydroazadirachtin (3.16 × 10−8 M) > dansyl dihydroazadirachtin (7.40 × 10−8 M) > DNP-azadirachtin (7.50 × 10−8 M) > biotin dihydroazadirachtin (1.27 × 10−7 M) ≫ 11-methoxy 22,23-dihydroazadirachtin (6.67 × 10−7 M). Arch. Insect Biochem. Physiol. 34:461–473, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Progesterone production of granulosa cells cultured in vitro is stimulated and cell differentiation increased, by follicle-stimulating hormone (FSH). This study examined whether the increased progesterone production observed when bovine granulosa cells are cultured occurs because (1) progesterone production by undifferentiated and/or differentiated cells is increased or (2) the differentiation of granulosa cells is stimulated. Viable bovine granulosa cells (2−3×105) from follicles 5–8 mm in diameter were cultured in the presence of 0, 1, 10 and 100 μu FSH (1 μu ≡ 1 μg NIH-FSH-S1) for 6 days at 37°C in a humidified atmosphere of 5% CO2 in air in 1 ml of a 1:1 mixture of Dulbecco's modified Eagle medium: Ham's F10 medium supplemented with 365 μg ml−1 l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin. Progesterone production, total DNA and protein, and cell diameter were determined sequentially over the culture period. The increases in progesterone production (ng μg−1 DNA per 24 h), cytoplasmic:nuclear ratio (μg protein μg−1 DNA) and cell diameter (μm) over 6 days culture indicated that granulosa cells underwent differentiation in the presence of FSH. Progesterone production of undifferentiated granulosa cells (diameter 14 μm or less) was stimulated by FSH (P < 0.01) in a dose dependent manner (1.0±0.2, 2.9±0.3, 3.7±0.3 and 4.9±0.4 ng μg−1 DNA per 24 h for 0, 1, 10 and 100 μu ml−1 FSH respectively) but remained constant within dose (P > 0.05) during a 6 day culture period. FSH stimulated (P < 0.05) the rate of granulosa cell differentiation (10±3%, 53±13%, 74±21% and 82±10% differentiating cells per well for 0 μu, 1 μu, 10 μu and 100 μu ml−1 FSH respectively) but did not stimulate (P > 0.05) progesterone production by differentiating granulosa cells (8.7±0.5 ng μg−1 DNA per 24 h). In conclusion, the increase in progesterone production of FSH-stimulated granulosa cells cultured in vitro appears to be mainly due to an increase in the number of differentiating cells with a constant rather than an increasing progesterone production per cell.  相似文献   

10.
1. Gastrulating chick embryo cells (stages 3–5 by HH) possess Ca2+-mobilizing receptors for ACh and ATP; insulin and noradrenaline have a weaker effect on [Ca2+], mobilization.2. The ed50 value for ACh is 4 (±0.5)· 10−6M and for ATP 20 (±5)· 10−6M.3. Addition of ACh and ATP to dissociated chick embryo cells causes rapid accumulation of IP3.4. The stimulatory effects of ACh and ATP on [Ca2+], mobilization and IP3 rapid formation are both additive.  相似文献   

11.
2-deoxyglucose uptake rates at low sugar concentrations (less than 500 μM) appeared to be lower than those predicted by the Michaelis-Menten model which correctly described higher concentrations. This phenomenon which we will call concentration-dependent transport lag, was also observed for L-glucose uptake which suggest that this phenomenon is carrier-independent. A model involving the perimembrane space is developed which, for L-glucose, gives k1 = 0.931 ± 0.072 × 10?6 l. mg protein?1. minute?1, k2 = 2.97 ± 0.19 × 10?7 l. mg protein?1. minute?1 and So = 88,8 ± 4,3 μM; where k1 is the diffusion constant in the cell membrane, k2 is the diffusion constant in the perimembrane space and So the sugar concentration required in the external medium in order to provide an équivalent sugar concentration in the transport carrier area.  相似文献   

12.
《Bone and mineral》1991,12(2):81-90
Using microfluorometric analysis in individual, fura-2 loaded cells, we found that thrombin (0.1–10 U/ml) caused a dose-dependent (EC50 ≈ 0.5 U/ml), rapid (within seconds), transient increase in cytoplasmic Ca2+ in the osteoblastic cell line MC3T3-El. The thrombin induced rise in cytoplasmic Ca2+ was not dependent on extracellular Ca2+ and was unaffected by indomethacin. In MC3T3-El cells, thrombin (0.3–10 U/ml) caused a rapid and dose-dependent (EC50 ≈ 0.5 U/ml) stimulation of PGE2 formation. The calcium ionophore A23187 (2 μmol/l) also rapidly stimulated an increase in cytoplasmic Ca2+ and the formation of PGE2 in MC3T3-El cells. These data indicate that thrombin mobilizes Ca2+ from intracellular stores and that Ca2+ may serve as a second messenger in thrombin induced stimulation of PGE2 biosynthesis in osteoblasts.  相似文献   

13.
《Life sciences》1986,38(26):2405-2411
Uptake and release of kyotorphin (TyrArg) in rat brain synaptosomes were studied. Synthetic kyotorphin was taken up into crude synaptosomes (P2), in a temperature-dependent manner. The Km and Vmax of the uptake were 1.31 ± 0.12 × 10−4M and 5.9 ± 0.5 pmol/mg protein/min, respectively. Metabolic inhibitors such as dinitrophenol and iodoacetamide and ouabain which is known as an inhibitor of Na+ dependent uptake mechanism significantly inhibited the uptake. When the synaptosomes previously preloaded with synthetic kyotorphin at 10−4M were exposed to high K+ medium, kyotorphin was released in a Ca2+-dependent manner. These findings support the view that kyotorphin plays a role as neurotransmitter/neuroregulator.  相似文献   

14.
The patterns of serum luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone and estradiol-17β during the estrous cycle of six crossbred (Alpine × Nubian × Native) and six native goats showing a 21 day estrous cycle in a semiarid zone of Venezuela are presented. In the crossbred goats, FSH had two significant peaks on Days 19 and 0 (33 ± 8.6 ng ml−1 and 25 ± 6 ng ml−1, respectively); in contrast, native goats only had one significant peak on the day of estrus (22 ± 2 ng ml−1), with the increase beginning on Day 17. During the follicular phase of crossbred goats, estradiol-17β and LH increased to 28 ± 6 pg ml−1 and 23 ± 6.9 ng ml−1, respectively, on Day 0. Prior to Day 0, LH increased to 10.0 ± 4.9 ng ml−1 on Day 18, decreasing to 1.5 ng ml−1 on Day 19, while estradiol-17β was increasing. This relationship between estradiol-17β and LH was not found to exist in native does, which presented a LH peak on Day 0 (30 ± 8 ng ml−1 and 35 ± 10 ng ml−1 in first and second estrus, respectively). LH basal levels were notably higher in native does. The highest concentrations of progesterone (10 and 12 ng ml−1) were detected on Days 12 and 15 in crossbred and native females, respectively. In conclusion, the relationship between estradiol-17β and gonadotropins during the follicular phase in crossbred goats suggests negative and positive feedback effects on both LH and FSH. Serum concentrations of LH were higher in native than in crossbred goats, whereas concentrations of FSH were higher in crossbred does. Thus, genetic factors need to be taken into account when comparing blood levels of gonadotropins in goats raised in tropical semiarid zones.  相似文献   

15.
16.
Hypotonicity-induced Ca2+ signals and volume regulation were studied in proliferating and quiescent subpopulations of multicellular prostate cancer spheroids. Enzymatic dissociation of multicellular spheroids 100 ± 19 μm in diameter, which are entirely proliferative, yielded a population of cells with a mean cell diameter of 17.5 ± 1.4 μm. After dissociation of spheroids in a size class of 200 ± 30, 300 ± 60, and 400 ± 65 μm in diameter, two subpopulations of cells with mean cell diameters corresponding to 12.9 ± 1.9 μm and 16.7 ± 2 μm were discriminated. The subpopulation of large cells was shown to be proliferative by positive Ki-67 antibody staining; the subpopulation of small cells was Ki-67 negative, indicating cell quiescence. In a spheroid size class of 100 ± 19 μm, a distinct subpopulation of quiescent cells was absent. Superfusion by hypotonic solutions revealed that only the proliferating cell fraction showed a regulatory volume decrease (RVD) and a [Ca2+]i transient. Both effects were absent in the quiescent cell population. The [Ca2+]i transient persisted in low (10 nM) Ca2+ solution and in the presence of 4 mM extracellular Ni2+ but was abolished in the presence of the endoplasmic reticulum Ca2+-ATPase blocker 2,5-di-tert-butylhydrochinone (t-BHQ). The t-BHQ likewise inhibited RVD, indicating that Ca2+ release from intracellular stores was necessary for RVD. Moreover, [Ca2+]i and RVD were dependent on an intact microfilament cytoskeleton because after 30 min of preincubation with cytochalasin B the [Ca2+]i transient was significantly reduced and RVD was abolished. The absence of RVD and [Ca2+]i transient in quiescent cells may be due to differences in the amount and the cytosolic arrangement of F-actin observed in quiescent cells. J. Cell. Physiol. 175:129–140, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The effect of exposure of single rat pituitary cells to 50 Hz sine wave magnetic fields of various strengths on the intracellular free Ca2+ concentration ([Ca2+]i) was studied by using dual-emission microfluorimetry, using indo-1 as probe. A 30 min exposure of the cells to vertical 50 μT peak magnetic field triggered a long-lasting increase in [Ca2+]i from a basal value of about 185 ± 4 nM to 326 ± 41 nM (S.E.; n = 150). The vertical and horizontal components of the static magnetic field were 57 and 15 μT, respectively. The 50 Hz ambient magnetic field was always below 0.1 μT rms. The effect was observed both at 25 ± 2 °C and at 37 ± 2 °C. Responsive cells, for which [Ca2+]i rose to values above 309 nM, were identified as lactotrophs and represented 29% of the total pituitaries. [Ca2+]i increase, for the most part, was due to Ca2+ influx through voltage-dependent dihydropiridine-sensitive calcium channels inhibited by PN 200-110. However, neither Ca2+ channel blockers nor removal of Ca2+ from the external medium during exposure completely prevented the field-induced [Ca2+]i increase. Additional experiments using an MTT colorimetric assay showed that alteration of Ca2+ homeostasis of lactotrophs was associated with impairment of some mitochondrial processes. © Wiley-Liss, Inc.  相似文献   

18.
Nucleotide-metabolizing enzymes play important roles in the regulation of intracellular and extracellular nucleotide levels. We studied ATPase activity in the nervous ganglia of Phyllocaulis soleiformis, a terrestrial slug. The ATPase was divalent cation-dependent, with a maximal rate for ATP hydrolysis at pH 6.0 and 7.2 in the presence of Ca2+ (5 mM). Mg2+-ATPase activity was only 26% of the activity observed in the presence of Ca2+ (5 mM). ZnCl2 (10 mM) produced a significant inhibition of 70%. Ca2+-ATPase activity was insensitive to the classical ATPase inhibitors ouabain, N-ethylmaleimide, orthovanadate and sodium azide. Levamisole, an inhibitor of alkaline phosphatase, was ineffective. Among nucleotides, ATP was the best substrate. The apparent Km (ATP) for Ca2+-ATPase was 348±84 μM ATP and the Vmax was 829±114 nmol Pi min−1 mg−1 protein. The P. soleiformis ganglial ATPase does not appear to fit clearly into any of the previously described types of Ca2+-ATPases.  相似文献   

19.
We determined whether activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and a subsequent increase in cytosolic calcium concentration ([Ca2+]i) was an obligatory signaling event mediating the increase in transendothelial permeability induced by bradykinin (BK) and α-thrombin (α-T). Both BK and α-T (each at a concentration range of 0.01–1 μM) caused dose-dependent increases in transendothelial 125I-albumin permeability in cultured bovine pulmonary artery endothelial cell monolayers. Both agonists also produced a rise in inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] by 10 sec that was followed by a prolonged increase in [Ca2+]i. Pretreatment of endothelial cells with the PLC inhibitor, 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dion [(U73122) at 10 μM for 15 min], prevented the increases in Ins(1,4,5)P3 and [Ca2+]i induced by both BK and α-T. However, inhibition of PLC with U73122 or another PLC inhibitor, neomycin, did not prevent the increase in endothelial permeability induced by either agonist. In contrast, depletion of cellular protein kinase C (PKC) with phorbol-12-myristate 13-acetate (0.01 μM for 20 hr) increased both BK- and α-T-induced phosphoinositide turnover but inhibited the agonist-induced increase in permeability. A PKC inhibitor, staurosporine (5 μM) likewise inhibited the BK-induced increase in endothelial cell permeability to albumin. We conclude that increases in endothelial permeability induced by the inflammatory mediators, BK and thrombin, can occur independently of PLC activation and increased [Ca2+]i but that a PKC-dependent pathway is required for the permeability response. J. Cell. Physiol. 173:387–396, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na+/Ca2+ exchanger (NCX) operating in the Ca2+-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca2+ influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na+-K+-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans'' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving unregulated thrombin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号