首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the four species of elasmobranchs examined (Triakis scyllia, Heterodontus japonicus, Scyliorhinus torazame, Dasyatis akajei), all identifiable caudal neurosecretory cells and their corresponding neurohemal areas showed urotensin II (UII)-immunoreactivity with varied intensity. To localize urotensin I (UI) in the caudal neurosecretory system of the dogfish, Triakis scyllia, h-CRF (1–20) antiserum that cross-reacts with UI was used in place of UI antiserum. CRF/UI-immunoreactivity was demonstrated in the neurosecretory cells and neurohemal areas. A considerable number of neurons showed both UII- and CRF/UI-immunoreactivities, suggesting that UII and UI are produced in the same neurosecretory cells. However, some neurons exhibited UII-immunoreactivity, but no CRF/UI-immunoreactivity. Cells immunoreactive only to CRF antiserum were not detected. At least two populations of neurons exist in the dogfish caudal neurosecretory system: (i) cells immunoreactive for both CRF/UI and UII, and (ii) cells immunoreactive for UII. The dorsal cells of the lamprey, Lampetra japonica, did not react with either UII or CRF antiserum.  相似文献   

2.
The neural neurosecretory system of fishes produces two biologically active neuropeptides, i.e. the corticotropin-releasing hormone paralog urotensin I (UI) and the somatostatin-related peptide urotensin II (UII). In zebrafish, we have recently characterized two UII variants termed UIIalpha and UIIbeta. In the present study, we have investigated the distribution of UI, UIIalpha and UIIbeta mRNAs in different organs by quantitative RT-PCR analysis and the cellular localization of the three mRNAs in the spinal cord by in situ hybridization (ISH) histochemistry. The data show that the UI gene is mainly expressed in the caudal portion of the spinal cord and, to a lesser extent, in the brain, while the UIIalpha and the UIIbeta genes are exclusively expressed throughout the spinal cord. Single-ISH labeling revealed that UI, UIIalpha and UIIbeta mRNAs occur in large cells, called Dahlgren cells, located in the ventral part of the caudal spinal cord. Double-ISH staining showed that UI, UIIalpha and UIIbeta mRNAs occur mainly in distinct cells, even though a few cells were found to co-express the UI and UII genes. The differential expression of UI, UIIalpha and UIIbeta genes may contribute to the adaptation of Dahlgren cell activity during development and/or in various physiological conditions.  相似文献   

3.
The caudal neurosecretory system is described here for the first time in the zebrafish, one of the most important models used to study biological processes. Light- and electron-microscopical approaches have been employed to describe the structural organization of Dahlgren cells and the urophysis, together with the immunohistochemical localization of urotensin I and II (UI and UII) peptides. Two latero-ventral bands of neuronal perikarya in the caudal spinal cord project axons to the urophysis. The largest secretory neurons (~20 μm) are located rostrally. UII-immunoreactive perikarya are much more numerous than those immunoreactive for UI. A few neurons are immunopositive for both peptides. Axons contain 75-nm to 180-nm dense-core vesicles comprising two populations distributed in two axonal types (A and B). Large dense vesicles predominate in type A axons and smaller ones in type B. Immunogold double-labelling has revealed that some fibres contain both UI and UII, sometimes even within the same neurosecretory granule. UII is apparently the major peptide present and predominates in type A axons, with UI predominating in type B. A surprising finding, not previously reported in other fish, is the presence of dense-core vesicles, similar to those in neurons, in astrocytes including their end-feet around capillaries. Secretory type vesicles are also evident in ependymocytes and cerebrospinal-fluid-contacting neurons in the terminal spinal cord. Thus, in addition to the urophysis, this region may possess further secretory systems whose products and associated targets remain to be established. These results provide the basis for further experimental, genetic and developmental studies of the urophysial system in the zebrafish.  相似文献   

4.
Although evidence exists that nitric oxide (NO) mediates neuroendocrine secretion in mammals, the involvement of NO in the neuroendocrine regulation of non-mammalian vertebrates has yet to be investigated in detail. The present review conveys several recent data, suggesting that NO plays a modulatory role in the caudal neurosecretory system (CNSS) of teleosts. The presence and distribution of neuronal NO synthase (nNOS) was demonstrated in the CNSS of the Nile tilapia Oreochromis niloticus by means of NADPHd histochemistry, NOS immunohistochemistry, NOS immunogold electron microscopy, the citrulline assay for NOS activity and Western blot analysis. NO production by the caudal spinal cord homogenates was also evaluated by the oxyhemoglobin assay. On the whole, these findings indicate that caudal neurosecretory cells express NOS enzymes and presumably produce NO as a cotransmitter. Moreover, the comparison of the nNOS distribution with that of urotensins I and II (UI and UII) suggests that neurosecretory Dahlgren cells belong to two different functional subpopulations: a population of UI/UII secreting nitrergic neurons and a population of non-nitrergic neurons, which principally secrete UII. These results implicate NO as a putative modulator of the release of urotensins from the neurosecretory axon terminals. Therefore, like in mammals, NO appears to influence neuroendocrine secretion in teleosts.  相似文献   

5.
Summary A double immunofluorescence method was devised to localize simultaneously urotensin-I (UI) and -II (UII) immunoreactivities in the caudal neurosecretory system of the goby, Gillichthys mirabilis. In a sequential fashion, sections of the posterior spinal cord and urophysis were treated with antiserum to corticotropin-releasing factor (CRF) that cross-reacts with UI, fluorescein-conjugated sheep anti-rabbit IgG, biotinylated anti-UII and rhodamine-conjugated avidin. UI and UII immunoreactivities appeared to coexist in some neurons and in most fibers and urophysial tissue; the remainder of the fibers and urophysis and the majority of neurons were immunoreactive for CRF/ UI only. No convincing evidence of immunoreactivity for UII only was found. A few nonreactive cells were seen, but these may not be neurosecretory neurons. The two immunoreactive cell types were not segregated topographically, and the intensity of perikaryal immunofluorescence for CRF/UI was variable. To explain these results a hypothesis that all caudal neurosecretory cells may synthesize both UI and UII and that immunoreactive differences may reflect different states of cellular activity, is suggested. This sequential double immunofluorescence method offers several advantages over other techniques and is especially useful for co-localization studies when primary antisera from different species are not available.  相似文献   

6.
This paper is concerned with part of the role and function of the caudal neurosecretory system of the charr,Salvelinus leucomaenis, studied by immunohistochemistry. In order to elucidate the different histologic changes, we examined the immunoreactivities of urotenisn I (UI) and urotensin II (UII) in 3 experimental groups: the feral (river) fish, the fresh-water aquarium-, and sea water aquarium-retained fish. Coexistence of UI and UII was demonstrated in most of the smaller and larger neurons distributed in and near the urophyseal system of all 3 groups. However, some of the larger neurons were immunoreactive only to a single hormone, UI or UII. Merely a few neurons indicated no reactivity for either UI or UII. No such clearcut differences were encountered immunohistochemically in the 3 groups. Neuronal and urophysial immuno-reactivity to UI of feral and fresh-water-retained fish was slightly stronger than that of sea water-retained fish. Moreover, in sea water-retained fish, the intensity of immunoreactivity for UI was variable, and the number of neurons positive for UII only was somewhat larger than that in feral and fresh-water-retained fish. A series of UII-positive cerebrospinal fluid (CSF)-contacting neurons were seen in the ependymal and subependymal layers ventral to the central canal of the spinal cord in every group. These CSF-contacting neurons might constitute another neurosecretory system aside from the ordinary caudal neurosecretory system equipped with urophysis. In contrast to the hypothalamohypophysial neurosecretory system, the caudal neurosecretory system did not show any significant changes among the 3 groups. This suggests that urotensins I and II have no essential role in osmoregulation of the charr.  相似文献   

7.
Enzymecytochemical features of the caudal neurosecretory system of 6 species of freshwater teleosts, Gudusia chapra, Gonialosa manmina (Clupeidae, Clupeiformes), Oxygaster bacaila (Cyprinidae, Cypriniformes), Mystus bleekeri (Bagridae, Cypriniformes), Sciaena coiter (Scienidae, Perciformes), and Mastacembelus pancalus (Mastacembelidae, Mastacembeliformes) have been investigated with the help of several specific histochemical techniques. No sex-dependent variation have been observed in the enzymecytochemical characteristics of the caudal neurosecretory system of the present species. The Dahlgren cells show intense RNA activity. Caudal neurosecretion lacks carbohydrate but seems to possess small amount of lipid. Acid-phosphatase is located in the Dahlgren cells and axons. Alkaline-phosphatase has been observed in the Dahlgren cells, axons, and urophysial blood-capillaries. Acetylcholine esterase is present in the Dahlgren cells, axons, and urophysis of Mystus, Mastacembelus, and Gonialosa, but lacking in the other 3 species. It is concluded that the caudal neurosecretory system of Mystus, Mastacembelus, and Gopialosa is innervated by cholinergic neurons. Despite their different taxonomic positions, caudal neurosecretory system of all 6 species produce similar responses to various enzymecytochemical tests, except for acetylcholine esterase.  相似文献   

8.
鲫鱼尾部神经分泌系统显微和亚显微结构的季节性变化   总被引:5,自引:0,他引:5  
鲫鱼尾部神经分泌系统的神经分泌细胞和它的轴突中可观察到各种不同电子密度的颗粒。在性腺各个不同的发育阶段,该系统的分泌物具有累积、充满、释放和恢复这样一种周期性变化,由此说明鲫鱼的尾部神经分泌系统和它的生殖有关。  相似文献   

9.
Oka S  Chiba A  Honma Y 《Zoological science》2000,17(1):103-109
The ontogeny of the caudal neurosecretory cells (Dahlgren cells) in the caudal spinal cord of the chum salmon, Oncorhynchus keta, was examined by conventional electron microscopy and with immunohistochemistry for urotensins (U) and neuropeptide Y (NPY). The precursors of the Dahlgren cells first appeared as agranular ovoid cells in the caudal region of the neural tube of 40-day-old embryos about one week before hatching. The occurrence of cytoplasmic granules in the immature Dahlgren cells became evident by the 14th day after hatching. At this moment, the U-positive reaction was merely demonstrated in some of the granules. Close association of NPY-positive fibers with the caudal neurosecretory structures was recognizable in 1-month-old larvae. Thus, it is apparent that the salmon Dahlgren cells start their secretory activity (production of the secretory granules) in early larval stages and that, thereafter, NPYergic afferent innervation of the caudal neurosecretory system becomes evident.  相似文献   

10.
Summary Methionine-enkephalin (Met-enk) was detected by immunocytochemistry and radioimmunoassay in the caudal neuro-secretory system of the carp Cyprinus carpio. Some cells showing urotensin I (UI)-immunoreactivity reacted to Met-enk antiserum, but others did not. Neurons with urotensin II (UII)-immunoreactivity did not react to Met-enk antiserum; neurons with both UI and UII immunoreactivities also displayed a negative Met-enk reaction. Met-enk was detected by radioimmunoassay in the urophysis, although the content was relatively small compared with that found in other parts of the central nervous system and in the pituitary.  相似文献   

11.
There are numerous aldehyde fuchsin (AF)-positive, neurosecretory cells of medium size (A cells) and a small number of large, AF-negative neurons (B cells) in the cortical layer of the cerebral ganglion. In the subesophageal ganglion, symmetrical groups of AF-positive cells lie ventrally. The peroxidase--antiperoxidase (PAP) method was used for the immunocytochemical study of substance P and ACTH in these ganglia. In addition, the presence of L-enkephalin and alpha endorphin could be confirmed. Using rabbit antibodies to substance P we found small immunoreactive neurons among negative A and B cells in the cerebral ganglion. The processes of these immunoreactive cells could be traced to the subcortical synaptic neuropil. With antibodies to ACTH, activity was visible in perikarya similar in size to A neurons. A part of the nerve terminals of the synaptic zone, some of the B neurons and further several nerve cells of the subesophageal ganglion reacted positively. Successive demonstration of substance P and ACTH on the same section showed that the two materials occurred in different cell types. Using antiopsin antibody in an indirect immunocytochemical test we observed strong reaction in numerous medium-sized perikarya and in nerve fibres of the synaptic zone of the cerebral ganglion, further in some neurons of the subesophageal and abdominal ganglia. In contrast to this result, the photoreceptor cells of the prostomium and cerebral ganglion were negative. Presumably, substance P is present in a perikaryon type hitherto unrecognized while ACTH and antiopsin reactions seem to be located first of all in A cells.  相似文献   

12.
Summary The caudal neurosecretory complex of poeciliids has previously been shown to be innervated by extranuclear and intrinsic serotonergic projections. In the present study, immunohistochemical techniques were used to characterize fibers originating from serotonin neurons intrinsic to the caudal spinal cord. Bipolar and multipolar neurons were oriented ventromedially, and contained numerous large granular vesicles. Three types of serotonergic fibers were distinguished based on their distribution and morphology. Intrinsic Type-A fibers branched into varicose segments near the ventrolateral surface of the spinal cord and contacted the basal lamina beneath the leptomeninges. Type-B fibers coursed longitudinally to enter the urophysis, where they diverged and terminated around fenestrated capillaries. Labelled vesicles in Type-A and Type-B terminals were the same size as those in labelled cells and in unlabelled neurosecretory terminals in the urophysis. Type-C small varicose fibers branched within the neuropil of the caudal neurosecretory complex. Serotonin may be secreted into the submeningeal cerebrospinal fluid, the urophysis, and the caudal vein by Type-A and Type-B fibers, whereas, Type-C fibers may be processes of serotonergic interneurons in the neuroendocrine nucleus. The possibility that urotensins I and II or arginine vasotocin were colocalized in the processes of the intrinsic serotonin neurons was investigated immunohistochemically. The negative results of these experiments suggest that serotonin-containing neurons may represent a neurochemically distinct subpopulation in the caudal neurosecretory complex.  相似文献   

13.
THE UROPHYSIS AND THE CAUDAL NEUROSECRETORY SYSTEM OF FISHES   总被引:1,自引:0,他引:1  
1. The caudal neurosecretory system is defined in teleosts as a complex of secretory neurones (Dahlgren cells) in the caudal spinal cord leading by a tract to neurohaemal tissue organized as a typical neurosecretory storage-release organ: the urophysis. 2. The teleost urophysis is generally a distinct, easily recognizable, lobate structure of variable external form. Significant morphological variations lie in the organization of the neurosecretory fibres in relation to the vascular bed and in the degree of penetration of the meninx by the neurosecretory fibres to form an organ external to the spinal cord proper. 3. The elasmobranch caudal system is composed of large cells with short axons projecting to a diffuse vascular bed; there is no organized urophysis. 4. The caudal neurosecretory system and its urophysis appear late in post larval development by comparison with the hypothalamic neurosecretory system. The Dahlgren cells originate from the ependyma in development and also during regeneration of the caudal system in adult life. 5.The elasmobranch system may represent the more primitive condition, and stages in the evolution of the advanced urophysial types can be visualized. The particular histology shown by the caudal system appears to have taxonomic significance. 6.The cytology of the Dahlgren cell and its neurosecretory material is described. The proteinaceous neurosecretory material has an affinity for acid stains but not for the Gomori stains or reagents demonstrating SH/SS groups. The inclusions visible at the light-microscope level are aggregates of elementary neurosecretory granules, 800–2500A diameter, which originate from Golgi centres. The possible participation of preterminal axonal regions–and tubular systems evident therein—in the formation of neurosecretory material is considered. 7.The structure of the axon terminals raises questions about the way in which neurohormone may be released into the blood. Small vesicles have been variously interpreted as cholinergic synaptic vesicles and as products of the fragmentation of membranes of elementary neurosecretory granules. Evidence for the release of ‘neuro-secretion centripetally’ into the cerebrospinal fluid also exists. 8.Functional analysis of the caudal neurosecretory system has proven most difficult, The bulk of earlier data and more recent information indicate a role in ionic regulation. Increased sodium uptake by the gills of goldfish has been reported, as a result of administration of urophysial extract, and electrophysiological studies indicate a responsiveness of the system to variations in blood sodium ion concentration. The urophysis also has a definite pressor effect in eels and will stimulate water retention in anurans. The early claim of Enami that the system was involved in buoyancy regulation has never been substantiated. It must be admitted that the function of this system, virtually ubiquitous in teleost and elasmobranch fishes at least, has been anything but established and still represents a major challenge to comparative physiologists.  相似文献   

14.
In order to make an immunohistochemical analysis of the development of the caudal neurosecretory system of the chum salmon, Oncorhynchus keta, we employed the peroxidase-anti-peroxidase technique using antisera specific for urotensins (U) I and II on artificially reared embryos, larvae, and juveniles of this species. Immunoreactivities for UI and UII were first demonstrated in the embryo immediately before hatching, showing labeled perikarya and fibers in the most caudal region of the spinal cord where the presumptive caudal neurosecretory system is located. However, distinct differentiation of the histological neurohemal organ had not yet begun in the embryo. Immunoreactive perikarya and fibers gradually increased in number, and an elaborate urophysis comparable to that of adults was demonstrated in the larvae about 5 months after hatching. At this stage, weak immunoreactivity against UI was detected in the neurohypophysis.  相似文献   

15.
The development of the caudal neurosecretory system (CNSS) of the Nile tilapia, Oreochromis niloticus, has been investigated by means of UI/oCRF (urotensin I/ovine corticotropin-releasing factor) immunohistochemistry and transmission electron microscopy. UI-like immunoreactive perikarya and fibers are first detected in the caudal spinal cord of larval fish about 4 days after hatching (stage 21). In the region of the future urophysis two bundles of strongly immunoreactive neurosecretory fibers are observed. At this stage, neurosecretory axons terminate on the meninx sheath of the spinal cord with immature neurosecretory terminals. The histogenesis of the urophysis begins at stage 24. The future neurohemal organ consists of a small ventral swelling of the spinal cord, which is associated with dilated vessels. At this stage, neurosecretory axons terminate on the basal lamina of the ingrowing blood vessels. Further development occurs by means of progressive branching of vessels and the concomitant increase in the number of neurosecretory terminals. In the caudal spinal cord, immunoreactive neurons also increase in number and progressively differentiate morphologically. Typical features of the mature CNSS are recognizable in 4-month-old juveniles. Data suggest that in tilapia both the synthesis and the release of urophysial hormones begin before morphogenesis of the neurohemal organ takes place.  相似文献   

16.
The cytology and synaptic organization of the insular trigeminal-cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

17.
Summary The lower spinal cord including the caudal neurosecretory system of the pike (Esox lucius) was investigated by means of light and electron microscopy and also with the fluorescence histochemical method of Falck and Hillarp for the visualization of monoamines. A system of perikarya displaying a specific green fluorescence of remarkably high intensity is disclosed in the basal part of the ventrolateral and lateral ependymal lining of the central canal. The area corresponding to the upper half of the urophysis has most cells; their number decreases caudally and cranially. A considerable number of their beaded neurites reach the neurosecretory neurons by different routes but are only occasionally present in the actual neurohemal region. An intensely fluorescent dendritic process is sometimes observed terminating with a bulbous enlargement at the ependymal surface in the central canal. Besides small, electron lucid vesicles in the terminal parts of the axons, the neurons contain numerous large dense-core vesicles which can apparently take up and store 5-hydroxydopa (5-OH-dopa) and 5-hydroxydopamine (5-OH-DA). These neurons are thought to be adrenergic and to contain a primary catecholamine, possibly noradrenaline.The varicosities of the adrenergic terminals are repeatedly observed contiguous to some of the neurosecretory axons, the membrane distance at places of contacts generally ranging from 150–200 Å. Another type of nerve terminals that contain only small empty vesicles, also after pretreatment with 5-OH-dopa or 5-OH-DA, are frequent among the neurosecretory neurons. These axons establish synaptic contacts with membrane thickenings on most of the neurosecretory neurons. Thus it seems that the neurosecretory neurons are innervated by neurons morphologically similar to cholinergic neurons and that part of them receive an adrenergic innervation, which supports the view hat the caudal neurosecretory cells do not constitute a functionally homogeneous population.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius Gesellschaft zur Förderung der Wissenschaften, Hamburg.Supported by the Swedish Natural Research Council (No. 99-35). This work was in part carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-56-06 and B70-14X-712-05).Supported by the Deutsche Forschungsgemeinschaft and USPHS Research Grant TW 00295-02.  相似文献   

18.
Electrical stimuli applied to the olfactory tract for one minute caused partial depletion, but for two to five minutes resulted in complete depletion of the neurosecretory material (NSM) from the Dahlgren cells as well as from the urophysis. However, if similar stimuli were directly applied to the caudal spinal cord for one minute, the NSM was completely depleted. The neurosecretory granules were reaccumulated in the neurons within fifteen minutes after the stimuli were cut of A rapid depletion of the NSM from the caudal neurons was correlated with their electrical properties and rapid transduction of nervous information into the hormonal message. The immediate response of the caudal neurons to the olfactory tract stimulation suggested that the former are synaptically controlled by a center in the brain.  相似文献   

19.
Summary In three species of teleosts — carp Cyprinus carpio; grass carp Ctenopharyngodon idella; and crucian carp Carassius auratus — the caudal neurosecretory system displays small, medium-sized and large neurons. Urotensin I (UI)-immunoreactive and UI-nonreactive neurons were found in all three groups; in general, the number of the latter neurons exceeded that of the former. Noteworthy are: (i) UI-immunoreactive fibers in the caudal spinal cord and (ii) dense accumulations of UI-immunoreactive product around the capillaries of the urophysis. In two species of elasmobranchs — cat shark Heterodontus japonicas and swell shark Cephaloscyllium umbratile — neurosecretory neurons decreased in size in rostro-caudal direction. Most of the neurosecretory perikarya, their axons and the corresponding neurohemal areas were UI-immunoreactive, but a small number of secretory neurons was devoid of immunoreaction. Oxytocin, arginine vasopressin, substance P, somatostatin, neurotensin, vasoactive intestinal polypeptide and gastrin-releasing peptide were not detected in the caudal neurosecretory system of the carp.  相似文献   

20.
Summary In the rostral hypothalamus of the domestic fowl, the magnocellular neurosecretory nuclei show a peculiar differentiation. Golgi studies of the supraoptic and paraventricular nuclei of the fowl reveal at least two major cell types: 1) large multipolar neurons, and 2) small interneurons. Golgi impregnations provide a detailed cytoarchitectural picture of the large-sized cells; the latter may well correspond to the neurosecretory cells demonstrated in the same regions by selective staining, and immunocytochemical and electron microscopical techniques.Electron microscopically, neuronal perikarya are observed to contain variable amounts of neurosecretory granules (100–200 nm in diameter; mean diameter of 160 nm) scattered throughout the cytoplasm. The diameters of these granules do not differ statistically in the two principal nuclear areas examined. The perikarya of these neurons display only a few axosomatic synapses containing electron-lucent and dense-cored vesicles (70–90 nm in diameter). Numerous nerve terminals of this type also end on the dendritic ramifications in the surrounding neuropil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号