首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cerebral cortex is composed of a large variety of distinct cell‐types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell‐type diversity during cortical development.  相似文献   

4.
Salvianolic acid B is isolated from Salvia miltiorrhiza,the root of which is widely used as a traditional Chinese medicine to treat stroke.However,little is known about how salvianolic acid B influences growth characteristics of neural stem cells (NSCs).The purpose of the present study was to evaluate the effects of salvianolic acid B on proliferation,neurite outgrowth and differentiation of NSCs derived from the cerebral cortex of embryonic mice using MTT,flow cytometry,immunofluorescence and RT-PCR.It was found that 20 μg mL·1 and 40 μg mL·1 salvianolic acid B had similar effects on proliferation of NSCs,and a suitable concentration of salvianolic acid B increased the number of NSCs and their derivative neurospheres.The growth-promoting activity of salvianolic acid B was dependent on and associated with an accumulation in the G2/S-phase cell population.Salvianolic acid B also promoted the neurite outgrowth of NSCs and their differentiation into neurons.The mRNA for tau,GFAP and nestin were present in differentiating neurospheres induced by salvianolic acid B.However,high-level expression of tau mRNA and low-level expression of GFAP mRNA was detected in differentiated cells,in contrast to the control conditions.This collective evidence indicates that exogenous salvianolic acid B is capable of promoting proliferation of neurospheres and differentiation towards the neuronal lineage in vitro and may act in the proliferation of NSCs and may promote NSC differentiation into neuronal cells.  相似文献   

5.
The liver has adapted to the inflow of ingested toxins by the evolutionary development of unique regenerative properties and responds to injury or tissue loss by the rapid division of mature cells. Proliferation of the parenchymal cells, i.e. hepatocytes and epithelial cells of the bile duct, is regulated by numerous cytokine/growth-factor-mediated pathways and is synchronised with extracellular matrix degradation and restoration of the vasculature. Resident hepatic stem/progenitor cells have also been identified in small numbers in normal liver and implicated in liver tissue repair. Their putative role in the physiology, pathophysiology and therapy of the liver, however, is not yet precisely known. Hepatic stem/progenitor cells also known as “oval cells” in rodents have been implicated in liver tissue repair, at a time when the capacity for hepatocyte and bile duct replication is exhausted or experimentally inhibited (facultative stem/progenitor cell pool). Although much more has to be learned about the role of stem/progenitor cells in the physiology and pathophysiology of the liver, experimental analysis of the therapeutic value of these cells has been initiated. Transplantation of hepatic stem/progenitor cells or in vivo pharmacological activation of the pool of hepatic stem cells may provide novel modalities for the therapy of liver diseases. In addition, extrahepatic stem cells (e.g. bone marrow cells) are being investigated for their contribution to liver regeneration. Hepatic progenitor cells derived from embryonic stem cells are included in this review, which also discusses future perspectives of stem cell-based therapies for liver diseases.  相似文献   

6.
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C‐peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver‐associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell‐replacement therapies. J. Cell. Biochem. 109: 236–244, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
A subset of precursors in the embryonic mouse cortex and in neurospheres expresses a higher level of the serine/threonine kinase Akt1 than neighboring precursors. We reported previously that the functional significance of high Akt1 expression was enhanced Akt1 activity, resulting in an increase in survival, proliferation, and self-renewal of multipotent stem/transit amplifying cells. Akt1 can interact with a number of signaling pathways, but the extrinsic factors that are required for specific effects of elevated Akt1 expression have not been identified. In this study we addressed the contributions of signaling via epidermal growth factor (EGF) and hedgehog (Hh) receptors. In EGF receptor-null precursors or following transient inhibition of EGF receptor tyrosine kinase activity, elevating Akt1 by retroviral transduction could still increase survival and proliferation but could not increase self-renewal. We also found that elevated Akt1 expression induced the expression of EGF receptors (EGFRs) in wild-type precursors. Several extrinsic factors, including Shh, can induce EGFR expression by cortical precursors, and we found that elevating Akt1 allowed them to respond to a subthreshold concentration of Shh to induce EGFRs. In precursors that lack the Hh receptor smoothened, however, elevating Akt1 did not increase EGFR expression or self-renewal, though it could still stimulate proliferation. These findings suggest that a subset of precursors in the embryonic cortex that express an elevated level of Akt1 can respond to lower concentrations of Shh than neighboring precursors, resulting in an increase in their expression of EGFRs. Signaling via EGFRs is required for their self-renewal.  相似文献   

8.
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.  相似文献   

9.
通过人胚胎干细胞(human embryonic stem cells,hESC)体外分化方法和畸胎瘤形成可以分化获得多种成体细胞.但目前尚不清楚是否可以从hESCs畸胎瘤中分离某些特异性细胞.通过体外筛选方法,有效地从hESCs畸胎瘤中分离出神经前体细胞(neural progenitor cells,NPCs)和间充质干细胞(mesenchymal stem cells,MSCs).这种hESCs畸胎瘤来源的NPCs和MSCs与体内神经前体细胞和间充质干细胞有着相似的分子标记和特性,并具有进一步的分化潜能——分别可以诱导成为神经元、神经胶质细胞、脂肪细胞和骨骼细胞等.根据人胚胎干细胞畸胎瘤中含有不同分化阶段的外胚层、中胚层和内胚层的组织或细胞,认为人胚胎干细胞畸胎瘤可以作为另一个细胞来源以获取多种(包括人胚胎干细胞体外分化难以得到的)各种前体/干细胞和终末分化细胞.  相似文献   

10.
A novel protein LUZP with 3 leucine zipper motifs at its amino terminus is predominantly expressed in the adult brain. A modified gene targeting approach was employed in an attempt to establish in vitro and in vivo models in which Luzp is knock-out (KO) for phenotype assessment and a reporter gene lacZ is knock-in (KI) for tracing its expression. We report in this study the molecular cloning of the Luzp gene, its targeting vector construction and Luzp-KO/lacZ-KI embryonic stem (ES) clone selection. Since LUZP is also expressed in ES cells, the possibility of embryonic lethality cannot be excluded when attempting to establish Luzp-null mutant mice. We have therefore examined the development of homozygous Luzp-KO/lacZ-KI clones in nude mice. Tissue types derived from all three embryonic germ layers were observed in teratomas developed in nude mice. In situ X-gal staining further revealed restricted expression of LUZP in neural lineage cells.  相似文献   

11.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述.  相似文献   

12.
A method has been developed for the study of somatostatin (SS) binding to dissociated cells from rat cerebral cortex. Binding of [125I][Tyr11]SS to cells obtained by mechanical dissociation of rat cerebral cortex was dependent on time and temperature, saturable, reversible and highly specific. Under conditions of equilibrium, i.e., 60 min at 25°C, native SS inhibited tracer binding in a dose-dependent manner. The Scatchard analysis of binding data was linear and yielded a dissociation constant of 0.60±0.08 nM with a maximal binding capacity of 160±16 fmol/mg protein. The binding of [125I][Tyr11]SS was specific as shown in experiments on tracer displacement by the native peptide, SS analogues, and unrelated peptides.  相似文献   

13.
14.
15.
Obstructive sleep apnea syndrome(OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrence of frequent and regular hypoxic events, patients with OSAS are at increased risk of cardiovascular disease, stroke, metabolic disorders, occupational errors, motor vehicle accidents and even death. Thus, OSAS has severe consequences and represents a significant economic burden. However, some of the consequences, as well as their costs can be reduced with appropriate detection and treatment. In this context, the recent advances that were made in stem cell biology knowledge and stem cell- based technologies hold a great promise for various medical conditions, including respiratory diseases. However, the investigation of the role of stem cells in OSAS is still recent and rather limited, requiring further studies, both in animal models and humans. The goal of this review is to summarize the current state of knowledge regarding both lung resident as well as circulating stem/progenitor cells and discuss existing controversies in the field in order to identify future research directions for clinical applications in OSAS. Also, the paper highlights the requisite for inter-institutional, multi-disciplinary research collaborations in order to achieve breakthrough results in the field.  相似文献   

16.
近年来,内皮细胞的应用价值不断提高,应用领域不断拓宽,但其来源有限,成为研究应用的主要障碍.胚胎干细胞在体外可分化为多种组织细胞系,有可能成为获取内皮细胞的另一来源.就人胚胎干细胞向内皮祖细胞分化、分离方法、相关分子机制及内皮祖细胞应用价值等进行阐述,以期能够引起更多的关注,推动其研究的进展.  相似文献   

17.
18.
Though cardiac progenitor cells should be a suitable material for cardiac regeneration, efficient ways to induce cardiac progenitors from embryonic stem (ES) cells have not been established. Extending our systematic cardiovascular differentiation method of ES cells, here we show efficient and specific expansion of cardiomyocytes and highly cardiogenic progenitors from ES cells. An immunosuppressant, cyclosporin-A (CSA), showed a novel effect specifically acting on mesoderm cells to drastically increase cardiac progenitors as well as cardiomyocytes by 10-20 times. Approximately 200 cardiomyocytes could be induced from one mouse ES cell using this method. Expanded progenitors successfully integrated into scar tissue of infracted heart as cardiomyocytes after cell transplantation to rat myocardial infarction model. CSA elicited specific induction of cardiac lineage from mesoderm in a novel mesoderm-specific, NFAT independent fashion. This simple but efficient differentiation technology would be extended to induce pluripotent stem (iPS) cells and broadly contribute to cardiac regeneration.  相似文献   

19.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry+NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号