首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
River hydrogeomorphology is a potential predictor of ecosystem and assemblage variation. We tested for fish assemblage variation as a function of hydrogeomorphology in a Midwestern US large river, the Wabash River. Fish data were classified by taxonomy and traits and we tested if assemblages varied with river hydrogeomorphology or river distance, defined into 10‐km distinct reaches. Three unique geomorphological units, Functional Process Zones (FPZ), were identified using an ArcGIS hydrogeomorphic model, based primarily on channel width, floodplain width, and down valley slope. Five locations were identified as FPZ A with narrow stream channel, high down valley slope, and an expansive floodplain. Ten locations were identified as FPZ B with a wide river channel and wide floodplain. Thirty‐five locations were identified as FPZ C with wide river channel and a constrained floodplain. The sites were categorized into three stream orders: 5, 6, and 7. We found hydrogeomorphology classified by unique FPZs or by river distance influenced taxonomic and functional fish assemblages for the Wabash River. There was high overlap among fish occurrences among FPZs, but nine species resulted as significant indicators of specific FPZs. Five traits were significant indicators of FPZs: an intermediate Swim Factor score, medium tolerance to silt, small‐large stream size preference, and two Shape Factor categories. Our conclusions are that fish assemblages respond strongly to local geomorphology and river distance, fitting the riverine ecosystem synthesis and the river continuum concept.  相似文献   

2.
River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley‐scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence‐ and abundance‐based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance‐based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley‐scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley‐scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.  相似文献   

3.
1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait–environment relationships and functional diversity of stream fish assemblages in the Río Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape‐scale (e.g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait–environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change.  相似文献   

4.
The spatial and temporal variations of the fish assemblages in mountain streams of China are poorly understood. The relationships between the fish assemblage and selected habitat features were examined in the North Tiaoxi River, one of headwaters of Taihu Lake. A total of 3,348 individuals belonging to 5 orders, 11 families, 25 genera and 34 species were collected including 33 native species and one invasive species. Among those, about 20 species were endemic to China. Non-metric Multidimensional Scaling (NMDS) was applied to compare fish assemblage structures from upstream to downstream during four seasons. Species assemblages differed along the stream continuum, but there was little apparent change associated with the seasons. Species richness and Shannon-Weaver index (H′) tended to increase along the stream continuum from the upstream to downstream and the proportion of invertivorous fish tended to significantly decrease along the continuum with a parallel significant increase in the percentage of omnivores. Fish assemblages were significantly related to both water quality and habitat structure variables. Canonical Correspondence Analysis ordinations (CCA) revealed that 6 of the 14 selected environmental variables had significant relationships with the fish assemblage such as distance to source, stream width, altitude, pH, water depth, and water velocity and different sampling sites were associated with different environmental variables in different seasons. The main differences in fish assemblage structure and diversity within the whole watercourse are probably related to large-scale factors such distance to source, altitude and stream width. Differences of instream characteristics are likely to be caused by natural variability of the ecosystems but also, in some case, by anthropogenic influence like human settlements, agriculture and river embankment and pollution from small factory.  相似文献   

5.
Aims Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics for predicting riparian plant community types and plant species abundances in four small mountain watersheds in central Nevada, USA.Methods We mapped riparian vegetation types and identified process zones (based on dominant geomorphic process and valley fill material) within the watersheds. We sampled sites in each combination of vegetation type and process zone (n = 184 sites) and collected data on watershed scale factors, valley and stream geomorphic characteristics and on plant cover of each geomorphic surface. Plant community types were defined by cluster and indicator species analyses of plant cover data, and related to geomorphic variables using ordination analysis (nonmetric multidimensional scaling). Linear mixed effects models were used to predict abundances of indicator species.Important findings Variables describing position in the watershed (elevation, contributing area) that are related to gradients of temperature, moisture and stream discharge were of primary importance in predicting plant community types. Variables describing local geomorphic setting (valley width, stream gradient, channel sediments, geomorphic surface height) were of secondary importance, but accurately described the geomorphic setting of indicator species. The process zone classification did not include position in the watershed or channel characteristics and only predicted plant community types with unique geomorphic settings. In small mountain watersheds, predicting riparian vegetation distribution requires explicit consideration of scale and geomorphic context within and among watersheds in addition to site variables.  相似文献   

6.
7.
1. The use of trait‐based approaches to examine the ecology of stream fish assemblages is increasing. However, selection of traits that will be useful in testing spatial or temporal hypotheses about ecological organisation is currently limited by availability of data, rather than empirical evaluation. 2. We analysed two data sets of stream fish assemblages to compare taxonomy and trait‐based approaches. The Wabash River temporal data set is based on 25 years of boat electrofishing collections over a 230‐km river distance. The Indiana Department of Environmental Management data set of stream collections in the state of Indiana was selected to represent a spatial database. We compared several trait‐based approaches: reproductive guilds, life history variables, biomonitoring metrics, ecosystem‐based functional guilds and feeding and ecosystem interaction guilds. 3. Analyses of fish assemblages that are designed to detect how environmental variation structures fish assemblages can expect similar results using taxonomic or trait‐based approaches. Results of trait‐based approaches will vary according to the spatial extent of the region and the number of unique entities of trait groups for a given data set. However, taxonomic analyses accounted for more variation than any trait‐based analyses.  相似文献   

8.
Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.   总被引:7,自引:0,他引:7  
1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20–40 times stream width). 2. Non‐metric multidimensional scaling (NMDS) identified 85% of the among‐site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter‐cyprinid‐redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60–0.82) by reach‐level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the ‘River Continuum Concept’ which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ‘Process Domains Concept’, which argues that local‐scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.  相似文献   

9.
The spatial–temporal patterns of fish assemblages in lotic systems can provide useful information in developing effective conservation measures. This study aimed to explore the spatial and seasonal changes in fish assemblages and their association with environmental factors in mountain streams of the Ren River, southwest China. Field investigations were conducted at 18 sites during the rainy and dry seasons in 2017. A total of 1,330 individuals, belonging to three orders, eight families, 19 genera, and 21 species, were collected. Analysis of similarities (ANOSIM) showed that the structure of fish assemblages varied significantly at the spatial scale, but not at the seasonal scale. In low‐order sites, fish assemblages were mainly dominated by cold‐water and rheophilic species (e.g., Rhynchocypris oxycephalus, Scaphesthes macrolepis, Metahomaloptera omeiensis, and Gnathopogon herzensteini), while those in high‐order sites were predominated by warm‐water and eurytopic or stagnophilic species (e.g., Squalidus argentatus, Hemiculter leucisculus, and Zacco platypus). Canonical correspondence analysis (CCA) showed that the fish assemblages were structured by a combination of large‐scale landscape factors (e.g., altitude and C‐link) and small‐scale habitat features (e.g., channel width, water temperature, and depth). Among these factors, landscape had the greatest influence on fish assemblages, while local habitat variables were less important or were only significant in certain seasons.  相似文献   

10.
We investigated the aquatic and riparian herpetofauna in a 789 km2 river catchment in northwest California to examine competing theories of biotic community structuring in catchment stream networks. Research in fluvial geomorphology has resulted in multi‐scale models of dynamic processes that cyclically create, maintain, and destroy environments in stream networks of mountain catchments. These models have been applied to understanding distributions of invertebrates, algae, fishes and their habitats across entire basin networks, but similar approaches with herpetofauna are rare. We examined multi‐scale spatial patterns of multiple species as they related to variation in channel types, channel settings, and within‐channel attributes that result from these processes. From 83 reaches distributed randomly throughout the watershed, we distinguished four channel types: 1) high gradient with cascade structure; 2) 2–4% gradient with step‐pool structure controlled by moderately steep valleys; 3) slightly entrenched, lower gradient, plane‐bed structure; and 4) low gradient, shallow, unconfined, multiple or migrating pool/riffle channels in broad alluvial valleys. The composition of herpetofauna differed in five of six pair‐wise comparisons among these channel types, indicating a minimum of three distinct mesoscale assemblages. We used non‐parametric multiple regression (NPMR) to examine relationships at multiple spatial scales. NPMR revealed species‐specific associations with channel settings and within‐channel environments among species sharing the same sets of channel types. Morphological adaptations, biophysical limits and natural histories of each species best explained their associations with distinct sets of attributes surrounding and within channel types. While each set of species has similarly adapted to fluvial and geomorphic disturbance processes structuring channels at the mesoscale, species within each set have adapted to a unique set of attributes that are best discerned when their spatial relationships are examined across multiple spatial scales. We evaluated the various spatial patterns against hypotheses of stream community organization and metacommunity perspectives.  相似文献   

11.
Synopsis Principal components analysis was performed on fish presence/absence data for 39 common fish species from 410 stream sites in Kansas. The analysis confirmed ten ecologically meaningful fish assemblages, based on species associations. Factor scores based on these assemblages were then clustered into six geographic areas or fish ecoregions. Canonical discriminant analysis identified environmental variables that distinguished the derived fish ecoregions. Mean annual runoff, mean annual growing season, and discharge appear most important. Mean width, mean depth, chloride concentration, water temperature, substrate type, gradient, and percent of pool habitat were less important. Correspondence exists between these fish ecoregions and the patterns of physiographic regions, river basins, geology, soil, and potential natural vegetation in Kansas. The multivariate statistical approach used to classify fish ecoregions should have considerable potential value for fish assessment and management purposes in areas other than the state of Kansas.  相似文献   

12.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

13.
Spatial patterns in the combinations of biological traits of fish communities were studied in the Garonne River system (57 000 km2, south‐west France). Fish species assemblages were recorded at 554 sampling sites, and the biological traits of species were described using a fuzzy‐coding method. A co‐inertia analysis of species distributions and biological traits identified some spatial patterns of species trait combinations. Fish species richness progressively increased from up‐ to downstream sections, and the longitudinal patterns of fish assemblages partitioned the river into clear biogeographic areas, such as the brown trout Salmo trutta (headwater streams), the grayling Thymallus thymallus , the barbel Barbus barbus and the bream Abramis brama zones (most downstream sections), which fitted with Huet's well‐known zonation for western European rivers. Only a few biological traits, chiefly related to life‐history attributes, significantly influenced the observed fish distributions. Fecundity, potential size, maximum age and reproductive factor increased from headwater to plain reaches. As a theoretical framework for assessing and predicting the functional organization of stream fish communities, spatial variations in species traits can be related to habitat conditions, thus providing explicit spatial schemes that may be useful to the design of both scientific studies and river management.  相似文献   

14.
Extensive distribution of widespread species and the loss of native species driven by anthropogenic disturbances modify community similarity, resulting in a decrease or increase in community distinctiveness. Data from four basins in the Wannan Mountains, China, were used to evaluate the effects of low‐head dams on patterns of fish faunal homogenization and differentiation based on abundance data. We aimed to examine the spatial changes in taxonomic and functional similarities of fish assemblages driven by low‐head dams and to examine whether the changes in the similarity of fish assemblages differed between taxonomic and functional components. We found that low‐head dams significantly decreased the mean taxonomic similarity but increased the mean functional similarity of fish assemblages in impoundments using abundance‐based approaches, suggesting that taxonomic differentiation accompanied functional homogenization in stream fish assemblages. These results show the importance of population abundance in structuring fish faunal homogenization and differentiation at small scales, especially when the major differences among assemblages are in species abundance ranks rather than species identities. Additionally, we also found only a weak positive correlation between changes in mean taxonomic and functional similarities, and partial pairs exhibited considerable variation in patterns of fish faunal homogenization and differentiation for taxonomic and functional components. In conclusion, this study highlighted that the observed taxonomic differentiation of current fish assemblages (short‐term phenomenon) is probably an early warning sign of further homogenization in regions where native species are completely predominated and that changes in taxonomic similarity cannot be used to predict changes in functional similarity.  相似文献   

15.
Contemporary and historical factors influence assemblage structure. The environmental and spatial influences acting on fish organization of rain forest coastal streams in the Atlantic rain forest of Brazil were examined. Fish (and functional traits such as morphology, diet, velocity preference, body size), environmental variables (pH, water conductivity, dissolved oxygen, temperature, stream width, flow, depth, substrate), and altitude were measured from 59 stream reaches. Asymmetric eigenvector maps were used to model the spatial structure considering direction of fish movements. Elevation played an important role—fish abundance, biomass, and richness all decrease with increasing elevation. Fish communities are influenced by both environmental and spatial factors, but downstream movements were shown to be more important in explaining the observed spatial variation than were bidirectional and upstream movements. Spatial factors, as well as environmental variables influenced by the spatial structure, explained most of the variation in fish assemblages. The strong spatial structuring is probably attributable to asymmetric dispersal limitation along the altitudinal profile: Dispersal is likely to be more limiting moving upstream than downstream. These fish assemblages reflect scale-dependent processes: At the stream-reach scale, fish respond to local environmental filters (habitat structure, water chemistry, and food supply), which are in turn influenced by a larger scale, namely the altitudinal gradient expected in steep coastal mountains. Thus, environmental drivers are not independent of spatial factors, and the effects of local factors can be confounded across the altitudinal gradient. These results may have implications for conservation, because downstream reaches are often neglected in management and conservation plans.  相似文献   

16.
1. Evaluations of stream geomorphic condition may increase our understanding of the composite effects of human‐induced habitat change on fish communities. Using systematic sampling of 44 reaches spread across 26 rivers in Vermont from 2002 through 2004, we tested the hypothesis that stream reaches in reference geomorphic condition would support fish assemblages that differed in diversity and productivity from fish communities found in reaches of poorer geomorphic condition. 2. At each study reach, we sampled the fish community, identified the morphological unit according to common stream classification systems and then evaluated the extent of deviation from reference geomorphic condition using a regionally adapted geomorphic assessment methodology. 3. We used principal component analysis (PCA) and linear regression to build exploratory models linking stream geomorphic condition to fish community characteristics. 4. Our results suggest that geomorphic condition significantly influences fish community diversity, productivity and condition. Geomorphic condition was a significant factor in all of our fish community models. In conjunction with additional reach characteristics, geomorphic condition explained up to 31% of the total variance observed in models for species diversity of fish communities, 44% of the variance in assemblage biomass and 45% of the variance in a regional index of biotic integrity. 5. Our work builds on single‐species evidence that geomorphic characteristics represent important local‐scale fish‐habitat variables, showing that stream geomorphic condition is a dominant factor affecting entire fish communities. Our results enhance our understanding of the hierarchy of factors that influences fish community diversity and organisation and support the use of geomorphic condition assessments in stream management.  相似文献   

17.
18.
This study examined the patterns of plant functional trait variation in relation to geomorphology, disturbance and a suite of other environmental factors in the riparian margin of the Upper Hunter River, New South Wales, Australia. Vegetation was surveyed on three geomorphic surfaces (point bar, bench and bank) along a 5.5‐km stretch of the Upper Hunter River. Functional traits relating to plant growth and reproduction were collected for the identified species. anova and principal components analysis were used to compare the trait assemblages of species associated with each geomorphic unit. Pearson's correlation coefficients were used to investigate trait variation with respect to environmental variables. There were clear differences in the plant functional trait assemblages associated with the three geomorphic units. Generally the point bar was associated with species that were herbaceous, with small seed mass, a short stature and a high specific leaf area (SLA). Conversely, the bench was associated with grasses that had unassisted seed dispersal and intermediate seed mass and SLA, while species on the bank had tall stature, large seed mass, a high SLA and a perennial life cycle. Variation along the primary gradient of plant functional trait composition was most strongly related to disturbance frequency and to a lesser extent soil nutrients and the proportion of clay and silt, while variation along the secondary gradient was associated with variation in substrate texture as well as soil nutrients.  相似文献   

19.
Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.  相似文献   

20.
This study determined if a spatial hierarchy existed with respect to reach-scale habitat, subwatershed-scale, and watershed-scale geomorphology and land use stressors on fish assemblages in southeastern U.S. coastal plain streams. During May–October 2009–2012, fishes were sampled by seine, and habitat was assessed at 50 reaches in the Lake Pontchartrain Basin (USA). Using partial redundancy analysis (pRDA) a variance decomposition procedure was used to partial out influences of confounding covariables at each spatial scale. Reach-scale habitat had the strongest association with the assemblage. Stream width, depth, aquatic vegetation and human debris cover, rapid habitat assessment score, and large woody debris volume were the most important variables. At subwatershed and watershed scales, natural and anthropogenic characteristics were important, including elevation, gradient, watershed area, wetland cover, stream density, road, dam and oil/gas well densities. Six species were associated most strongly with the watershed variables, compared to reach- and subwatershed-scale variables. These species had more “r-selected” life-history strategies (e.g., smaller eggs, shorter life spans, multiple broods, longer spawning season, and trophic generalists). In contrast, most species that were associated strongest with reach-scale variables exhibited more “k-selected” life-history traits (e.g., larger eggs, longer life spans, shorter spawning season, single brood, and trophic specialists).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号