首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A challenging problem in neural crest development is to understand how a migratory population of multipotent stem cells gives rise to a diverse array of differentiated cell types in the correct spatiotemporal manner. There is now ample evidence that this process involves the generation of postmigratory progenitor cells present in a variety of neural crest targets. When individual progenitors are challenged by instructive growth factors they are able to produce neural and non-neural cells, raising the question of how fate restrictions appropriate to a given embryonic location are regulated in multipotent postmigratory progenitor cells. Although some of the extracellular cues involved have been identified, it is likely that fate decisions in progenitor cells are controlled by the combinatorial action of multiple environmental signals. Moreover, cell type specificity is thought to be regulated by an interplay between extracellular and intracellular cues. We are just beginning to unravel some of the mechanisms that allow the context-dependent integration of cell-extrinsic and cell-intrinsic signals in multipotent progenitor cells.  相似文献   

2.
The neural crest is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos. After delamination and migration from the neuroepithelium, these cells contribute to a diverse array of tissues including neurons, smooth muscle, craniofacial cartilage, bone cells, endocrine cells and pigment cells. Considerable progress in recent years has furthered our understanding at a molecular level of how this important group of cells is generated and how they are assigned to specific lineages. Here we review a number of recent studies supporting a role for Wnt signaling in neural crest induction, differentiation, and apoptosis. We also summarize the timing of expression of a number of Wnt ligands and receptors with respect to neural crest induction.  相似文献   

3.
Neural crest cells are a migratory population that forms most of the peripheral nervous system, facial skeleton, and numerous other derivatives. These cells arise from the neural ectoderm and are first recognizable as discrete cells after neural tube closure. In this review, I summarize the results of studies from our laboratory on neural crest cell lineage and origin. Our recent experiments demonstrate that interactions between the presumptive neural plate and the nonneural ectoderm are likely to be instrumental in the induction of the avian neural crest. Juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. However, neural crest cells do not appear to be segregated from other neuroepithelial cells; cell lineage studies have demonstrated that individual precursor cells within the neural tube can give rise to both neural crest and neural tube derivatives as diverse as sensory, commissural, and motor neurons. This suggests that individual neuroectodermal cells are multipotent, such that a precursor within the neural tube has the ability to form both neural tube (central nervous system) and neural crest (peripheral nervous system and other) derivatives. Further support for flexibility in the developmental program of neuroepithelial cells comes from experiments in which the cranial neural folds are ablated; this results in regulation by the remaining ventral neural tube cells to form neural crest cells after the endogenous neural crest is removed. At later stage of development, this regulative capacity is lost. Following their emigration from the neural tube, neural crest cells become progressively restricted to defined embryonic states. Taken together, these experiments demonstrate that: (1) the neural crest is an induced population that arises by interactions within the ectoderm; (2) initially, progenitor cells are multipotent, having the potential to form multiple neural crest and neural tube derivatives; and (3) with time, the precursors become progressively restricted to form neural crest derivatives and eventually to individual phenotypes.  相似文献   

4.
The neural crest is an embryonic cell population that originates at the border between the neural plate and the prospective epidermis. Around the time of neural tube closure, neural crest cells emigrate from the neural tube, migrate along defined paths in the embryo and differentiate into a wealth of derivatives. Most of the craniofacial skeleton, the peripheral nervous system, and the pigment cells of the body originate from neural crest cells. This cell type has important clinical relevance, since many of the most common craniofacial birth defects are a consequence of abnormal neural crest development. Whereas the migration and differentiation of the neural crest have been extensively studied, we are just beginning to understand how this tissue originates. The formation of the neural crest has been described as a classic example of embryonic induction, in which specific tissue interactions and the concerted action of signaling pathways converge to induce a multipotent population of neural crest precursor cells. In this review, we summarize the current status of knowledge on neural crest induction. We place particular emphasis on the signaling molecules and tissue interactions involved, and the relationship between neural crest induction, the formation of the neural plate and neural plate border, and the genes that are upregulated as a consequence of the inductive events.  相似文献   

5.
The neural crest is a transient population of multipotent progenitors contributing to a diverse array of tissues throughout the vertebrate embryo. Embryonic stem (ES) cells are able to form embryoid body and spontaneously differentiate to various lineages, following a reproducible temporal pattern of development that recapitulates early embryogenesis. Embryoid bodies were triturated and the dissociated cells were processed for fluorescence-activated cell sorting (FACS), and more than 1% of cells were identified as frizzled-3+/cadherin-11+. Expression of marker genes associated with various terminal fates was detected for chondrocytes, glia, neurons, osteoblasts and smooth muscles, indicating that the FACS-sorted frizzled-3+/cadherin-11+ cells were multipotent progenitor cells capable of differentiating to fates associated with cranial neural crest. Moreover, the sorted cells were able to self-renew and maintain multipotent differentiation potential. The derivation of cranial neural crest-like multipotent progenitor cells from ES cells provides a new tool for cell lineage analysis of neural crest in vitro.  相似文献   

6.
The neural crest is a multipotent population of migratory cells unique to the vertebrate embryo. Neural crest arises at the lateral edge of the neural plate and migrates throughout the embryo to give rise to a wide variety of cell types including peripheral and enteric neurons and glia, craniofacial cartilage and bone, smooth muscle, and pigment cells. Here we review recent studies that have addressed the role of several signaling pathways in the induction of the neural crest. Work in the mouse, chick, Xenopus, and zebrafish have shown that a complex network of genes is activated at the neural plate border in response to neural crest-inducing signals. We also summarize some of these findings and discuss how the differential activation of these genes may contribute to the establishment of neural crest diversity.  相似文献   

7.
Isolation of a stem cell for neurons and glia from the mammalian neural crest.   总被引:38,自引:0,他引:38  
D L Stemple  D J Anderson 《Cell》1992,71(6):973-985
We have isolated mammalian neural crest cells using a monoclonal antibody to the low affinity NGF receptor, and established conditions for the serial propagation of these cells in clonal culture to assess their developmental potential. This analysis indicates that, first, single mammalian neural crest cells are multipotent, able to generate at least neurons and Schwann cells like their avian counterparts. Second, multipotent neural crest cells generate multipotent progeny, indicating that they are capable of self-renewal and therefore are stem cells. Third, multipotent neural crest cells also generate some clonal progeny that form only neurons or glia, suggesting the production of committed neuroblasts and glioblasts. Manipulation of the substrate alters the fate of the multipotent cells. These findings have implications for models of neural crest development in vivo, and establish a system for studying the generation of cellular diversity by a multipotent stem cell in vitro.  相似文献   

8.
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages, future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in na?ve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins: activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.  相似文献   

9.
Multiple neural and non-neural cell types arise from the neural crest (NC) in vertebrate embryos. Recent work has provided evidence for multipotent stem cells and intermediate precursors in the early NC cell population as well as in various NC derivatives in embryos and even in adult. Advances have been made towards understanding how cytokines, regulatory genes and cell-cell interactions cooperate to control commitment and differentiation to pigment cells, glia and neurone subtypes. In addition, NC cell fates appeared to be unstable, as differentiated NC cells can reverse to multipotent precursors and transdifferentiate in vitro.  相似文献   

10.
The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin’s inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.  相似文献   

11.
The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.  相似文献   

12.
Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated.  相似文献   

13.
The neural crest, a population of multipotent progenitor cells, is a defining feature of vertebrate embryos. Neural crest precursor cells arise at the neural plate border in response to inductive signals, but much remains to be learned about the molecular mechanisms underlying their induction. Here we show that the protooncogene c-Myc is an essential early regulator of neural crest cell formation in Xenopus. c-myc is localized at the neural plate border prior to the expression of early neural crest markers, such as slug. A morpholino-mediated "knockdown" of c-Myc protein results in the absence of neural crest precursor cells and a resultant loss of neural crest derivatives. These effects are not dependent upon changes in cell proliferation or cell death. Instead, our findings reveal an important and unexpected role for c-Myc in the specification of cell fates in the early ectoderm.  相似文献   

14.
Neural crest cells, a population of proliferative, migratory, tissue-invasive stem cells, are a defining feature of vertebrate embryos. These cells arise at the neural plate border during a time in development when precursors of the central nervous system and the epidermis are responding to the extracellular signals that will ultimately dictate their fates. Neural crest progenitors, by contrast, must be maintained in a multipotent state until after neural tube closure. Although the molecular mechanisms governing this process have yet to be fully elucidated, recent work has suggested that Myc functions to prevent premature cell fate decisions in neural crest forming regions of the early ectoderm. Here, we show that the small HLH protein Id3 is a Myc target that plays an essential role in the formation and maintenance of neural crest stem cells. A morpholino-mediated 'knockdown' of Id3 protein results in embryos that lack neural crest. Moreover, forced expression of Id3 maintains the expression of markers of the neural crest progenitor state beyond the time when they would normally be downregulated and blocks the differentiation of neural crest derivatives. These results shed new light on the mechanisms governing the formation and maintenance of a developmentally and clinically important cell population.  相似文献   

15.
A gene regulatory network orchestrates neural crest formation   总被引:2,自引:0,他引:2  
The neural crest is a multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the peripheral nervous system to the craniofacial skeleton and pigment cells. A multimodule gene regulatory network mediates the complex process of neural crest formation, which involves the early induction and maintenance of the precursor pool, emigration of the neural crest progenitors from the neural tube via an epithelial to mesenchymal transition, migration of progenitor cells along distinct pathways and overt differentiation into diverse cell types. Here, we review our current understanding of these processes and discuss the molecular players that are involved in the neural crest gene regulatory network.  相似文献   

16.
The neural crest is a multipotent, migratory cell population arising from the border of the neural and surface ectoderm. In mouse, the initial migratory neural crest cells occur at the five-somite stage. Bone morphogenetic proteins (BMPs), particularly BMP2 and BMP4, have been implicated as regulators of neural crest cell induction, maintenance, migration, differentiation and survival. Mouse has three known BMP2/4 type I receptors, of which Bmpr1a is expressed in the neural tube sufficiently early to be involved in neural crest development from the outset; however, earlier roles in other domains obscure its requirement in the neural crest. We have ablated Bmpr1a specifically in the neural crest, beginning at the five-somite stage. We find that most aspects of neural crest development occur normally; suggesting that BMPRIA is unnecessary for many aspects of early neural crest biology. However, mutant embryos display a shortened cardiac outflow tract with defective septation, a process known to require neural crest cells and to be essential for perinatal viability. Surprisingly, these embryos die in mid-gestation from acute heart failure, with reduced proliferation of ventricular myocardium. The myocardial defect may involve reduced BMP signaling in a novel, minor population of neural crest derivatives in the epicardium, a known source of ventricular myocardial proliferation signals. These results demonstrate that BMP2/4 signaling in mammalian neural crest derivatives is essential for outflow tract development and may regulate a crucial proliferation signal for the ventricular myocardium.  相似文献   

17.
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial‐to‐mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.  相似文献   

18.
19.
Pigment cells are one of many cell types derived from the neural crest. This review focuses on the mechanisms that control the timing and pathways of migration of pigment cells into the epidermis and determinants that control the differentiation of pigment cells. Several factors may control the timing and pattern of pigment cell migration in the dorsolateral space including the loss of inhibitory molecules in the pathway, the appearance of chemotactic molecules emanating from the dispersing dermatome, and the differentiation of pigment cells, which may be the only neural crest derivative capable of utilizing the substratum found in the dorsolateral path Control of pigment cell differentiation remains controversial. A working model presented in this review suggests that multipotent neural crest cells that disperse ventrally upon separation from the neural tube preserve neurogenic ability and lose melanogenic ability, whereas those cells that are arrested at the entrance to the dorsolateral path lose neurogenic ability so that the population becomes primarily melanogenic. During the time that the latter population is arrested in migration it is speculated that the neural crest cells are exposed to an environment comprised of specific extracellular matrix molecules and/or growth factors that enhance pigment cell differentiation.  相似文献   

20.
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号