首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary We have built the phylogenetic tree of Vertebrate 5S RNA using the sequence data of thirteen species belonging to six groups. Evolution of the 5S genes has been very slow in Vertebrates since 90 residues are identical in all 5S RNAs which are presently sequenced.In Amphibians and Teleosts different 5S genes are active in oocytes and in somatic cells. This dual gene system has probably been acquired independently by Amphibians and Teleosts. In Amphibians, the oocyte-type 5S genes have evolved much faster than the somatic-type genes. This is not true in all species since the oocyte-type genes of one Teleost (Tinca tinca) have evolved more slowly than the somatic-type genes.There are in all Vertebrate 5S RNAs five complementary regions which can be base-paired. The sequence data are compatible with the three secondary-structure models that have been proposed for 5S RNA.  相似文献   

4.
Previtellogenic oocytes of Tinca tinca accumulate very large amounts of 5S RNA. We show here that 5S RNA stored in oocytes differs from liver 5S RNA in 3 out of 120 nucleotides. Liver and oocyte 5S RNAs, therefore, are produced by different genes. Both kinds of 5S genes are active in oocytes. However, only 5S RNA of the oocyte type accumulates in these cells. In Tinca tinca as in Xenopus laevis, oocyte-type and somatic-type 5S RNAs differ by three properties, ie., primary structure, conformation, and metabolic stability. Nucleotide substitutions occur in different positions in oocyte and somatic 5S RNAs of Tinca tinca and Xenopus laevis. We do not understand how different sets of nucleotide substitutions confer to 5S RNAs of both species similar properties in vivo, namely, increased metabolic stability.  相似文献   

5.
Sequence studies of the 5 S DNA of Xenopus laevis   总被引:12,自引:0,他引:12  
  相似文献   

6.
7.
Xenopus 5S RNA genes exhibit a pattern of differential expression during development in which some members (oocyte-type) are transcribed only in oocytes, while others (somatic-type) are expressed in both oocytes and somatic cells. Using cloned DNA probes specific for each gene type, we determined the positions of these genes on Xenopus metaphase chromosomes by in situ hybridization. Somatic-type 5S genes in both X. laevis and X. borealis are located at the distal end of the long arm of only one chromosome (number 9). The oocyte-type 5S RNA genes are found at the distal ends of the long arms of most Xenopus chromosomes, including chromosome 9. Thus, large scale differences in chromosomal location cannot explain the selective expression of these genes, as suggested previously.  相似文献   

8.
9.
10.
11.
12.
Summary Cytochemical methods and electron microscopy were used to study changes in the chemical composition of nuclear, nucleolar and perinuclear bodies during the early stages of oocyte development inPoecilia formosa, an apomictic species of fish that produces only female offspring. Prominent accumulations of ribonucleoprotein (RNP) occur in nucleoli and appear on either side of the nuclear envelope during diplotene. In certain planes of section, RNP material seems to be in transit across this interface.En bloc acid extractions or RNAse treatment abolished basophilia and markedly reduced the electron density of both nucleoli and cytoplasmic nucleolar-like bodies. DNA-specific fluorescent probes such as mithramycin failed to reveal nucleolar cores in poeciliid oocytes, although the same procedures showed unequivocal localization of GC-rich DNA cores within multiple nucleoli of diplotene oocytes fromXenopus laevis or the rainbow trout,Salmo gairdneri. Also, cytological hybridization studies, utilizing [3H]rRNA as a probe for nucleolar oocytes. Feulgen-stained pachytene oocytes ofP. formosa have twice the number of chromosome strands seen in similar stages of oocytes from two, related bisexual species,P. mexicana andP. latipinna. Although the bivalent nature of these chromosomes could not be resolved with the light microscope, configurations resembling, but not identical to, synaptonemal complexes were identified by electron microscopy.  相似文献   

13.

Aims

Phenformin, resveratrol and AICAR stimulate the energy sensor 5′-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis.

Methods

Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting.

Results

AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin.

Conclusions

AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential biomarker for the development of drugs that diminish diabetic renal hypertrophy.  相似文献   

14.
Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.  相似文献   

15.
16.
17.
18.
The distribution of monodisperse high molecular weight RNA (38, 30, 28, 23, and 18S RNA) was studied in the salivary gland cells of Chironomus tentans. RNA labeled in vitro and in vivo with tritiated cytidine and uridine was isolated from microdissected nucleoli, chromosomes, nuclear sap, and cytoplasm and analyzed by electrophoresis on agarose-acrylamide composite gels. As shown earlier, the nucleoli contain labeled 38, 30, and 23S RNA. In the chromosomes, labeled 18S RNA was found in addition to the 30 and 23S RNA previously reported. The nuclear sap contains labeled 30 and 18S RNA, and the cytoplasm labeled 28 and 18S RNA. On the basis of the present and earlier analyses, it was concluded that the chromosomal monodisperse high molecular weight RNA fractions (a) show a genuine chromosomal localization and are not due to unspecific contamination, (b) are not artefacts caused by in vitro conditions, but are present also in vivo, and (c) are very likely related to nucleolar and cytoplasmic (pre)ribosomal RNA. The 30 and 23S RNA components are likely to be precursors to 28 and 18S ribosomal RNA. The order of appearance of the monodisperse high molecular weight RNA fractions in the nucleus is in turn and order: (a) nucleolus, (b) chromosomes, and (c) nuclear sap. Since both 23 and 18S RNA are present in the chromosomes, the conversion to 18S RNA may take place there. On the other hand, 30S RNA is only found in the nucleus while 28S RNA can only be detected in the cytoplasm, suggesting that this conversion takes place in connection with the exit of the molecule from the nucleus.  相似文献   

19.
G Gargiulo  F Razvi  A Worcel 《Cell》1984,38(2):511-521
Active minichromosomes assembled on injected 5S RNA gene clones are stable in Xenopus oocytes; endogenous 5S DNA specific factor(s) are required for their assembly. When somatic-type and oocyte-type 5S RNA gene clones are coinjected, the somatic genes are assembled into active minichromosomes, while most of the oocyte genes are assembled into inactive ones. The differential 5S RNA gene expression, which mimics that in somatic cells, appears to result from titration of 5S DNA specific factor(s) by the competing somatic 5S DNA, followed by histone mediated assembly of inactive chromatin on the oocyte 5S DNA. Stable minichromosomes are also assembled on a cloned histone H4 gene; again, intragenic DNA rearrangements affect the efficiency of assembly of active chromatin and differential gene expression occurs after coinjection of two or more H4 DNA constructs. We suggest that the H4 DNA molecules also compete for limiting quantities of specific DNA binding factor(s) required for the assembly of active H4 gene chromatin.  相似文献   

20.
Patterns of radioisotope incorporation are useful characteristics in describing cellular RNA fractions, and have indicated a distinctive "nuclear" RNA. In order to characterize the RNA fractions of the two nuclear components, nucleoli and chromatin, and to determine thereby the precise localization of the RNA typical of isolated nuclei, time-courses of P32 incorporation into nucleolar, chromosomal, and cytoplasmic RNA of Drosophila salivary glands have been determined from autoradiograms. Two experiments are reported which cover 12 and 18 hour periods, including an initial 2 hour feeding on P32. Concentrations of RNA-P32 (identified by ribonuclease digestion) were determined by grain counts. After 1 hour only the nucleolar RNA is labelled. Activity is detectible in chromosomal and cytoplasmic RNA after the 2nd hour. The nucleolar fraction reaches its maximum activity shortly after transfer of the larvae to non-radioactive food, the other fractions several hours later. Maximum activities persist in the chromosomal and cytoplasmic fractions; nucleolar activity decreases after the 9th hour. The observed differences in times at which incorporation begins and maximum activities are reached, and in maintenance of maximum activities indicate that chromosomal and nucleolar RNA are distinct fractions. The metabolic characteristics which have been ascribed to "nuclear" RNA apply only to the nucleolar fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号