首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invasive alien species have been revealed to drastically alter the structure of native communities; however, there is scarce information on whether taxonomic and functional spaces occupied by native species are equally filled by exotic species. We investigated the diversity of native species to understand the impact of exotic Oreochromis niloticus in the upper Kabompo River, northwest of Zambia using taxonomic and functional diversity indices. To achieve this, two tests were performed (Test 1, compared natives in invaded and uninvaded sections; Test 2, compared natives in invaded section). A total of 17 species were collected for functional diversity computation, out of which fourteen (14) functional trait measurements linked to feeding, locomotion, and life history strategy were taken. Findings revealed that taxonomic and functional diversity values changed with invasion in both tests. Taxonomic diversity was 15% more in invaded than uninvaded sections in Test 1 and was not consistent across sampling points of invaded section in Test 2. Invaded areas were taxonomically less diverse, but functionally diverse in both tests. The analysis of similarity and nonmetric multidimensional scaling revealed no difference in Bray–Curtis similarity assemblages in both tests. Our findings revealed that exotic species more often occupy unfilled gaps in the communities often occupied by the native species; this is achieved by occupying functional spaces. Overall, changes in taxonomic and functional diversity of native species documented here partially confirmed impacts of O. niloticus invasion. Therefore, we recommend a multifaceted approach to assess cumulative impacts of invasion on native species.  相似文献   

2.
The importance of Oreochromis in worldwide aquaculture and regional fisheries motivates the study of their genetic diversity in their native range. In this article, all mitochondrial cytochrome c oxidase subunit I gene (COI) sequences of Oreochromis species are retrieved from Barcode of Life Data system to quantify the available DNA barcoding information from wild individuals collected within the native ranges of the respective species. It is found that 70% of the known species in the genus still lack a COI barcode, and only 15% of the available sequences are from within the respective native ranges. Many of the available sequences have been produced from specimens acquired from aquaculture and introduced, naturalized populations, making the assessment of variation within the original native range challenging. Analyses of the wild-collected fraction of available sequences indicated the presence of cryptic lineages within Nile tilapia Oreochromis niloticus and O. schwebischi, the occurrence of potential introgressive hybridization between O. niloticus and blue tilapia O. aureus, and potential ancestral polymorphism between Karonga tilapia O. karongae and black tilapia O. placidus. This article also reports a case of misidentification of O. mweruensis as longfin tilapia O. macrochir. These results stress the importance of improving the knowledge of genetic variation within the native ranges of Oreochromis species for better-informed conservation of these natural resources.  相似文献   

3.
This study was conducted to determine the effect of different stress factors on some physiological measurements of Nile tilapia (Oreochromis niloticus).A total number of 160 Nile tilapia, the body weight ranging between 100 and 120 g, were exposed to three stress factors of hypoxia, overcrowding and starvation for different periods 24, 72 and 144 h. The results of cortisol level were 134.15, 144.27, 154.12 ng/ml and 140.18 ng/ml for control, hypoxia, overcrowding and starvation, respectively, while after 144 h did not show significant difference among treatments compared with control group. In contrast, the values of T3 and T4 observed reduction with significant difference that T3 ranged between the highest value 122.12 ng/ml for control group to lowest value of starvation group 94.35, 93.81 and 88.46 ng/ml after 24, 72 and 144 h. Also, similar trend of results observed in T4 and blood glucose among treatments. And the enzymatic activity of lactate dehydrogenise (LDH) increased in hypoxic group, while a significant reduction appeared in overcrowding and starved fish compared to control group. The pyruvate kinase (PK) activity decreased in hypoxic group but increased in other group.  相似文献   

4.
In Nile tilapia (Oreochromis niloticus), individuals with atypical sexual genotype are commonly used in farming (use of YY males to produce all-male offspring), but they also constitute major tools to study sex determinism mechanisms. In other species, sexual genotype and sex reversal procedures affect different aspects of biology, such as growth, behavior and reproductive success. The aim of this study was to assess the influence of sexual genotype on sperm quality in Nile tilapia. Milt characteristics were compared in XX (sex-reversed), XY and YY males in terms of gonadosomatic index, sperm count, sperm motility and duration of sperm motility. Sperm motility was measured by computer-assisted sperm analysis (CASA) quantifying several parameters: total motility, progressive motility, curvilinear velocity, straight line velocity, average path velocity and linearity. None of the sperm traits measured significantly differed between the three genotypes. Mean values of gonadosomatic index, sperm concentration and sperm motility duration of XX, XY and YY males, respectively ranged from 0.92 to 1.33%, from 1.69 to 2.22 ×109 cells mL−1 and from 18′04″ to 27′32″. Mean values of total motility and curvilinear velocity 1 min after sperm activation, respectively ranged from 53 to 58% and from 71 to 76 μm s−1 for the three genotypes. After 3 min of activity, all the sperm motility and velocity parameters dropped by half and continued to slowly decrease thereafter. Seven min after activation, only 9 to 13% of spermatozoa were still progressive. Our results prove that neither sexual genotype nor hormonal sex reversal treatments affect sperm quality in male Nile tilapias with atypical sexual genotype.  相似文献   

5.
Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu). Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1), steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2), ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3), protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis—keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.  相似文献   

6.
Demeke Admassu 《Hydrobiologia》1996,337(1-3):77-83
The breeding season of Oreochromis niloticus in Lake Awassa was studied from fish caught monthly from December 1987 to November 1988 in relation to a number of environmental factors. Fish at various stages of gonad development and spawning were caught in almost all months, but breeding fish were more frequent twice a year: main peak occurred during January–March and a secondary one occurred during July–September. Gonadosomatic index (GSI) values peaked twice in the study year, a major peak being during January–March and a less pronounced one during July–September. Thus, it was concluded that O. niloticus in Lake Awassa breeds intensively in the former and less intensively during the latter period, and that some breeding occurs at any time of the year. Intensive breeding activity during January–March appeared associated with increase in solar radiation and sunshine hours d–1 whereas that during July–September appeared associated with heavy rainfall. However, intensive breeding in both periods coincided with increase in phytoplankton biomass. Previously, phytoplankton biomass in this lake is shown to increase following increase in nutrients due to mixing- and rainfall-associated changes in the hydrography and hydrology of the lake. Thus, although further studies are required, increase in phytoplankton may be one of the environmental cues to stimulate spawning in O. niloticus in Lake Awassa whereas other factors such as sunshine and rainfall may have indirect roles through their effects on the hydrology and hydrography of the lake ultimately resulting in changes in phytoplankton biomass.  相似文献   

7.

Background

The probable influence of genes and the environment on sex determination in Nile tilapia suggests that it should be regarded as a complex trait. Detection of sex determination genes in tilapia has both scientific and commercial importance. The main objective was to detect genes and microRNAs that were differentially expressed by gender in early embryonic development.

Results

Artificial fertilization of Oreochromis niloticus XX females with either sex-reversed ΔXX males or genetically-modified YY ‘supermales’ resulted in all-female and all-male embryos, respectively. RNA of pools of all-female and all-male embryos at 2, 5 and 9 dpf were used as template for a custom Agilent eArray hybridization and next generation sequencing. Fifty-nine genes differentially expressed between genders were identified by a false discovery rate of p < 0.05. The most overexpressed genes were amh and tspan8 in males, and cr/20β-hsd, gpa33, rtn4ipl and zp3 in females (p < 1 × 10−9). Validation of gene expression using qPCR in embryos and gonads indicated copy number variation in tspan8, gpa33, cr/20β-hsd and amh. Sequencing of amh identified a male-specific duplication of this gene, denoted amhy, differing from the sequence of amh by a 233 bp deletion on exonVII, hence lacking the capability to encode the protein motif that binds to the transforming growth factor beta receptor (TGF-β domain). amh and amhy segregated in the mapping family in full concordance with SD-linked marker on LG23 signifying the QTL for SD. We discovered 831 microRNAs in tilapia embryos of which nine had sexually dimorphic expression patterns by a false discovery rate of p < 0.05. An up-regulated microRNA in males, pma-mir-4585, was characterized with all six predicted target genes including cr/20β-hsd, down-regulated in males.

Conclusions

This study reports the first discovery of sexually differentially expressed genes and microRNAs at a very early stage of tilapia embryonic development, i.e. from 2 dpf. Genes with sexually differential expression patterns are enriched for copy number variation. A novel male-specific duplication of amh, denoted amhy, lacking the TGF-β domain was identified and mapped to the QTL region on LG23 for SD, thus indicating its potential role in SD.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-774) contains supplementary material, which is available to authorized users.  相似文献   

8.
Sex in Oreochromis niloticus (Nile tilapia) is principally determined by an XX/XY locus but other genetic and environmental factors also influence sex ratio. Restriction Associated DNA (RAD) sequencing was used in two families derived from crossing XY males with females from an isogenic clonal line, in order to identify Single Nucleotide Polymorphisms (SNPs) and map the sex-determining region(s). We constructed a linkage map with 3,802 SNPs, which corresponded to 3,280 informative markers, and identified a major sex-determining region on linkage group 1, explaining nearly 96% of the phenotypic variance. This sex-determining region was mapped in a 2 cM interval, corresponding to approximately 1.2 Mb in the O. niloticus draft genome. In order to validate this, a diverse family (4 families; 96 individuals in total) and population (40 broodstock individuals) test panel were genotyped for five of the SNPs showing the highest association with phenotypic sex. From the expanded data set, SNPs Oni23063 and Oni28137 showed the highest association, which persisted both in the case of family and population data. Across the entire dataset all females were found to be homozygous for these two SNPs. Males were heterozygous, with the exception of five individuals in the population and two in the family dataset. These fish possessed the homozygous genotype expected of females. Progeny sex ratios (over 95% females) from two of the males with the “female” genotype indicated that they were neomales (XX males). Sex reversal induced by elevated temperature during sexual differentiation also resulted in phenotypic males with the “female” genotype. This study narrows down the region containing the main sex-determining locus, and provides genetic markers tightly linked to this locus, with an association that persisted across the population. These markers will be of use in refining the production of genetically male O. niloticus for aquaculture.  相似文献   

9.

Background and Trophic Diversity Study

Lake Turkana is an understudied desert lake shared by Kenya and Ethiopia. This system is at the precipice of large-scale changes in ecological function due to climate change and economic development along its major inflowing river, the Omo River. To anticipate response by the fish community to these changes, we quantified trophic diversity for seven ecological disparate species (Alestes baremose, Hydrocynus forskalli, Labeo horie, Lates niloticus, Oreochromis niloticus, Synodontis schall, and Tilapia zillii) using stable isotopes. Based on their marked morphological differentiation, we postulated that dietary niches of these species would be similar in size but show little overlap. The degree of trophic diversity varied greatly among the species studied, refuting our hypothesis regarding dietary niche size. Oreochromis niloticus and L. niloticus had the highest trophic diversity and significantly larger dietary niches than T. zillii, A. baremose and H. forskalli. Low overlap among the dietary niches of the seven species, with the exception of the synodontid catfish S. schall, is consistent with our second hypothesis.

Predicting Species’ Vulnerability

Breeding vulnerability was highest among those species with the lowest trophic diversity. We predict that in suffering two strikes against them, A. baremose, H. forskalli, T. zillii, and L. horie will be most affected by the highly altered Lake Turkana ecosystem and that O. niloticus, L. niloticus and S. schall will be least affected. Low vulnerability among O. niloticus and L. niloticus is promising for the future of the lake’s fishery, but the third most important fishery species (L. horie) will be highly vulnerable to impending ecosystem change. T. zillii should be treated as separate from O. niloticus in the fishery given higher sensitivity and a different ecological role. We see potential for expansion of the fishery for S. schall but don’t recommend the development of a fishery for A. baremose and H. forskalli.  相似文献   

10.
Species of Osmanthus are economically important ornamental trees, yet information regarding their plastid genomes (plastomes) have rarely been reported, thus hindering taxonomic and evolutionary studies of this small but enigmatic genus. Here, we performed comparative genomics and evolutionary analyses on plastomes of 16 of the 28 currently accepted species, with 11 plastomes newly sequenced. Phylogenetic studies identified four main lineages within the genus that are here designated the: “Caucasian Osmanthus” (corresponding to O. decorus), “Siphosmanthus” (corresponding to O. sect. Siphosmanthus), “O. serrulatus + O. yunnanensis,” and “Core Osmanthus: (corresponding to O. sect. Osmanthus + O. sect. Linocieroides). Molecular clock analysis suggested that Osmanthus split from its sister clade c. 15.83 Ma. The estimated crown ages of the lineages were the following: genus Osmanthus at 12.66 Ma; “Siphosmanthus” clade at 5.85 Ma; “O. serrulatus + O. yunnanensis” at 4.89 Ma; and “Core Osmanthus: clade at 6.2 Ma. Ancestral state reconstructions and trait mapping showed that ancestors of Osmanthus were spring flowering and originated at lower elevations. Phylogenetic principal component analysis clearly distinguished spring‐flowering species from autumn‐flowering species, suggesting that flowering time differentiation is related to the difference in ecological niches. Nucleotide substitution rates of 80 common genes showed slow evolutionary pace and low nucleotide variations, all genes being subjected to purifying selection.  相似文献   

11.
Enhancing host resistance to infectious disease has received increasing attention in recent years as a major goal of farm animal breeding programs. Combining field data with genomic tools can provide opportunities to understand the genetic architecture of disease resistance, leading to new opportunities for disease control. In the current study, a genome-wide association study was performed to assess resistance to the Tilapia lake virus (TiLV), one of the biggest threats affecting Nile tilapia (Oreochromis niloticus); a key aquaculture species globally. A pond outbreak of TiLV in a pedigreed population of the GIFT strain was observed, with 950 fish classified as either survivor or mortality, and genotyped using a 65 K SNP array. A significant QTL of large effect was identified on chromosome Oni22. The average mortality rate of tilapia homozygous for the resistance allele at the most significant SNP (P value = 4.51E−10) was 11%, compared to 43% for tilapia homozygous for the susceptibility allele. Several candidate genes related to host response to viral infection were identified within this QTL, including lgals17, vps52, and trim29. These results provide a rare example of a major QTL affecting a trait of major importance to a farmed animal. Genetic markers from the QTL region have potential in marker-assisted selection to improve host resistance, providing a genetic solution to an infectious disease where few other control or mitigation options currently exist.Subject terms: Quantitative trait loci, Quantitative trait, Genetic markers, Animal breeding, Genome-wide association studies  相似文献   

12.
White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (Myotis sodalis), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats. It is caused by a cutaneous infection with the fungus Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are much more resistant to cutaneous infection with Pd, however. We thus conducted analyses of wing epidermis from hibernating E. fuscus and M. lucifugus to determine their fatty acid compositions, and laboratory Pd culture experiments at 4.0–13.4°C to determine the effects of these fatty acids on Pd growth. Our analyses revealed that the epidermis of both bat species contain the same 7 fatty acid types (14:0, 15:0, 16:0. 16:1, 18:0, 18:1, & 18:2), but the epidermis of M. lucifugus contains: a) more stearic (18:0) acid, b) less palmitoleic (16:1) acid, c) less myristic (14:0) acid, and, d) less oleic (18:1) acid than that of E. fuscus. The growth of Pd was inhibited by: a) myristic and stearic acids at 10.5–13.4°C, but not at 4.0–5.0°C, b) oleic acid at 5.0–10.6°C, c) palmitoleic acid, and, d) linoleic (18:2) acid at 5.0–10.6°C. One set of factors that enables E. fuscus to better resist cutaneous P. destructans infections (and thus WNS) therefore appears to be the relatively higher myristic, palmitoleic, and oleic acid contents of the epidermis.  相似文献   

13.
In genetic fish breeding research, clear pedigree information is of great significance for breeding and parental management. In order to establish a stable, highly accurate, and widely applicable parentage identification method for tilapia, 13 highly polymorphic microsatellite loci within populations of Oreochromis niloticus, O. aureus, O. niloticus × O. aureus, and their mixed population were screened. Four groups of fluorescent-labeled multiple capillary electrophoresis were established for allelic genotyping. The assignment success rate reached 100% when 7, 9, 8 and 12 loci were used in the population of O. niloticus, O. aureus, O. niloticus × O. aureus, and their mixed population, respectively. All 175 progeny individuals of “Yuemin No. 1” tilapia were exclusively assigned to their parental pairs when the 12 loci for the mixed population were used. This study established a fluorescent-labeled microsatellite-based parentage assignment method for O. niloticus, O. aureus, O. niloticus × O. aureus, and their mixed population with high identification accuracy and efficiency, which lays a foundation for pedigree information and population genetic management in tilapia breeding.  相似文献   

14.

Background

Fish species often exhibit significant sexual dimorphism for commercially important traits. Accordingly, the control of phenotypic sex, and in particular the production of monosex cultures, is of particular interest to the aquaculture industry. Sex determination in the widely farmed Nile tilapia (Oreochromis niloticus) is complex, involving genomic regions on at least three chromosomes (chromosomes 1, 3 and 23) and interacting in certain cases with elevated early rearing temperature as well. Thus, sex ratios may vary substantially from 50%.

Results

This study focused on mapping sex-determining quantitative trait loci (QTL) in families with skewed sex ratios. These included four families that showed an excess of males (male ratio varied between 64% and 93%) when reared at standard temperature (28°C) and a fifth family in which an excess of males (96%) was observed when fry were reared at 36°C for ten days from first feeding. All the samples used in the current study were genotyped for two single-nucleotide polymorphisms (rs397507167 and rs397507165) located in the expected major sex-determining region in linkage group 1 (LG 1). The only misassigned individuals were phenotypic males with the expected female genotype, suggesting that those offspring had undergone sex-reversal with respect to the major sex-determining locus. We mapped SNPs identified from double digest Restriction-site Associated DNA (ddRAD) sequencing in these five families. Three genetic maps were constructed consisting of 641, 175 and 1,155 SNPs from the three largest families. QTL analyses provided evidence for a novel genome-wide significant QTL in LG 20. Evidence was also found for another sex-determining QTL in the fifth family, in the proximal region of LG 1.

Conclusions

Overall, the results from this study suggest that these previously undetected QTLs are involved in sex determination in the Nile tilapia, causing sex reversal (masculinisation) with respect to the XX genotype at the major sex-determining locus in LG 1.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1383-x) contains supplementary material, which is available to authorized users.  相似文献   

15.
This study was conducted to determine the breeding season, gonadal development, egg laying period, clutch size and other biological aspects of spotted flapshell turtle, Lissemys punctata, of Bangladesh between January 1997 and December 2001. The egg laying period of L. punctata, was found between August and March. The nesting sites were elevated fallow lands in secluded areas. The female turtle laid all the mature eggs at a time for each clutch at night. A gravid female turtle laid three clutches of eggs in each year and the mean clutch size was 13.0 ± 1.9 eggs and mean weight of each egg was 10.3 ± 1.3 g. The eggs are spherical in shape and whitish in color. The mean incubation period was 173 ± 34 days (range 119–225 days). The incubation period of first clutch was the longest than the second and third clutches. Hatching success was found 41%. Maximum hatching was observed in June. The present investigation was made to explore the possibility to raise turtle farming in captive condition. The findings would, hopefully, help to rear the species and to assess the commercial potentiality of turtle farming in captive condition, that is, in the eco-climatic condition of Bangladesh.  相似文献   

16.
Peroxidase from date palm (Phoenix dactylifera L.) leaves was purified to homogeneity and characterized biochemically. The enzyme purification included homogenization, extraction of pigments followed by consecutive chromatographies on DEAE-Sepharose and Superdex 200. The purification factor for purified date palm peroxidase was 17 with 5.8% yield. The purity was checked by SDS and native PAGE, which showed a single prominent band. The molecular weight of the enzyme was approximately 55 kDa as estimated by SDS–PAGE. The enzyme was characterized for thermal and pH stability, and kinetic parameters were determined using guaiacol as substrate. The optimum activity was between pH 5–6. The enzyme showed maximum activity at 55 °C and was fairly stable up to 75 °C, with 42% loss of activity. Date palm leaves peroxidase showed Km values of 0.77 and 0.045 mM for guaiacol and H2O2, respectively. These properties suggest that this enzyme could be a promising tool for applications in different analytical determinations as well as for treatment of industrial effluents at low cost.  相似文献   

17.
The development of genomic markers is described for Nile tilapia, Oreochromis niloticus, using the Diversity Arrays Technology (DArT) genotype‐by‐sequencing platform. A total of 13 215 single nucleotide polymorphism (SNP) markers and 12 490 silicoDArT (dominant) markers were identified from broodstock of two selective breeding programs [Genetically Improved Farmed Tilapia (GIFT) strain from Malaysia and the Abbassa strain from Egypt]. Over 10 000 SNPs were polymorphic in either strain, and 2985 and 3087 showed strain‐specific polymorphisms for the GIFT and Abbassa strains respectively. We demonstrate the potential utility of these markers for rapid genomic screening and use in breeding programs.  相似文献   

18.
The introduction of invasive Nile tilapia (Oreochromis niloticus), and the rapacious predator Nile perch (Lates niloticus), into Lake Victoria resulted in a decline in population sizes, genetic diversity and even extirpation of native species which were previously the mainstay of local fisheries. However, remnant populations of native fish species, including tilapia, still persist in satellite lakes around Lake Victoria where they may coexist with O. niloticus. In this study we assessed population genetic structure, diversity, and integrity of the native critically endangered Singidia tilapia (O. esculentus) in its refugial populations in the Yala swamp, Kenya, and contrasted this diversity with populations of the invasive tilapia O. niloticus in satellite lakes (Kanyaboli, Namboyo and Sare) and Lake Victoria. Based on mtDNA control region sequences and eight nuclear microsatellite loci, we did not detect any mtDNA introgression between the native and the invasive species in Lakes Kanyaboli and Namboyo, but did find low levels of nuclear admixture, primarily from O. niloticus to O. esculentus. Some genetic signal of O. esculentus in O. niloticus was found in Lake Sare, where O. esculentus is not found, suggesting it has recently been extirpated by the O. niloticus invasion. In both species, populations in the satellite lakes are significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles. For O. niloticus, genetic diversity in satellite lakes was similar to that found in Lake Victoria. Our data imply a low frequency of immigration exchange between the two populations of O. esculentus and we suggest that the populations of this endangered species and important fisheries resource should be conserved separately in Lakes Kanyaboli and Namboyo and with high priority.  相似文献   

19.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

20.
The effects of aluminum on plasma ion, lipid, protein and steroid hormone concentration were evaluated in Oreochromis niloticus broodstock females. Lipid and protein concentrations from the gonads and liver were also measured. Experiments were performed at neutral and acidic water pH. Four groups of fish were tested for 96 h: 1) control conditions at neutral water pH; 2) control conditions at acidic water pH (CTR-Ac); 3) aluminum at neutral water pH (Al-N); and 4) aluminum at acidic water pH (Al-Ac). Aluminum and acidic water pH exposure caused no ionoregulatory disturbances. Total lipid concentration increased in the mature gonads and decreased in the liver, suggesting an acceleration of lipid mobilization to the ovaries in animals exposed to aluminum. However, a decreased protein concentration in ovaries was also observed. Exposure of control fish to acidic water pH caused an increased concentration of plasma 17α-hydroxyprogesterone. However, females exposed to aluminum at acidic water pH showed a decreased of plasma 17α-hydroxyprogesterone and cortisol. No differences in plasma 17β-estradiol were observed. The physiological mechanisms underlying the disturbances observed are discussed focusing on reproduction. We suggest that aluminum can be considered an endocrine disrupting compound in mature O. niloticus females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号