首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
牛体内,外受精胚胎玻璃化冷冻保存技术的研究初报   总被引:2,自引:0,他引:2  
利用3种培养液即输卵管合成液(SOF)、TCM199和CRlaa对牛体外受精后的卵母细胞进行培养,结果卵裂率分别达85%、67%和72%,囊胚发育率分别为37%、21%和30%。对所获得的囊胚利用EFS玻璃化溶液进行冷冻保存。在10%EG中预处理5min后再移入EFS40平衡30s二步法冷冻保存的胚胎,其1解冻后继续发育率高达86%,与对照组91%相比无显性差异(P>0.05)。而EFS30二步  相似文献   

2.
The time of the first cleavage of bovine zygotes during in vitro culture can affect the rate of development and cell number of the blastocysts. The aim of this work was to study the effect of the timing of first cleavage on the cryosurvival of the resulting blastocysts. Following standard IVM and IVF, zygotes were cultured in modified synthetic oviduct fluid (SOF), with 10% fetal calf serum (FCS) added 48 hr post insemination, in a humidified atmosphere of 5% CO2, 5% O2 and 90% N2. Embryos which cleaved by 24, 27 30, 33, or 36 hr after insemination (IVF) were harvested and further cultured to the blastocyst stage (day 7 or day 8 post IVF). All developing blastocysts on days 7 and 8 were classified into three groups and were cryopreserved by vitrification. Group A consisted of blastocysts (<150 μm, small blastocysts); group B consisted of expanded or hatching blastocysts (>150 μm, large blastocysts); and group C consisted of morphologically poor quality blastocysts. The vitrification solution consisted of 6.5 M glycerol and 6% bovine serum albumin in PBS (VS3a). Thawed embryos were cultured further and survival was defined as the re‐expansion and maintenance of the blastocoel over 24, 48, and 72 hr, respectively. Overall survival and hatching at 72 hr post‐thawing was higher in blastocysts formed by day 7 than those formed by day 8 (60% vs. 40% survival; 63% vs. 45% hatching). Large blastocysts from day‐7 and day‐8 groups survived significantly better than small or poor quality blastocysts (76% vs. 63% and 31%; 72% vs. 30% and 26%, respectively; P < 0.05). Day‐7 blastocysts from the 27‐ and 30‐hr cleavage groups survived significantly better than those from the 36‐hr group (63% and 66% vs. 25%, P < 0.05). Day‐8 blastocysts from later cleaved (30 hr) zygotes had a higher survival than the 27‐hr cleavage groups (52% vs. 26%, P < 0.05). These results indicate that the day of blastocyst appearance, developmental stage, and timing of the first cleavage post‐insemination can influence the cryosurvival of bovine blastocysts following vitrification. Mol. Reprod. Dev. 53:318–324, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Chimeric embryos were produced by aggregation of parthenogenetic (Japanese Red breed) and in vitro fertilized (Holstein breed) bovine embryos at the Yamaguchi Research Station in Japan and by aggregation of parthenogenetic (Red Angus breed) and in vitro fertilized (Holstein breed) embryos at the St. Gabriel Research Station in Louisiana. After embryo reconstruction, live offspring were produced at each station from transplanting these embryos. The objective of this joint study was to evaluate the developmental capacity of reconstructed parthenogenetic and in vitro fertilized bovine embryos. In experiment I, chimeric embryos were constructed: by aggregation of four 8‐cell (demi‐embryo) parthenogenetic and four 8‐cell stage (demi‐embryo) IVF‐derived blastomeres (method 1) and by aggregation of a whole parthenogenetic embryo (8‐cell stage) and a whole IVF‐derived embryo (8‐cell stage) (method 2). Similarly in experiment II, chimeric embryos were constructed by aggregating IVF‐derived blastomeres with parthenogenetic blsatomeres. In this experiment, three categories of chimeric embryos with different parthenogenetic IVF‐derived blastomere ratios (2:6; 4:4, and 6:2) were constructed from 8‐cell stage bovine embryos. In experiment III, chimeric embryos composed of four 8‐cell parthenogenetic and two 4‐cell IVF‐derived blastomeres or eight 16‐cell parthenogenetic and four 8‐cell IVF‐derived blastomeres were constructed. Parthenogenetic demi‐embryos were aggregated with sexed (male) IVF demi‐embryos to produce chimeric blastocysts (experiment IV). In the blastocyst stage, hatching and hatched embryos were karyotyped. In experiment V, chimeric embryos that developed to blastocysts (zona‐free) were cryopreserved in ethylene glycol (EG) plus trehalose (T) with different concentrations of polyvinylpyrrolidone (PVP; 5%, 7.5%, and 10%). In experiment I, the aggregation rate of the reconstructed demi‐embryos cultured in vitro without agar embedding was significantly lower than with agar embedding (53% for 0% agar, 93% for 1% agar, and 95% for 1.2% agar, respectively). The aggregation was also lower when the aggregation resulted from a whole parthenogenetic and IVF‐derived embryos cultured without agar than when cultured with agar (70% for 0% agar, 94% for 1% agar, and 93% for 1.2% agar, respectively). The development rate to blastocysts, however, was not different among the treatments. In experiment II, the developmental rates to the morula and blastocyst stages were 81%, 89%, and 28% for the chimeric embryos with parthenogenetic:IVF blastomere ratios of 2:6, 4:4, and 6:2, respectively. In experiment III, the developmental rate to the morula and blastocyst stages was 60% and 65% for the two 4‐cell and four 8‐cell chimeric embryos compared with 10% for intact 8‐cell parthenogenetic embryos and 15% for intact 16‐cell parthenogenetic embryos. To verify participation of parthenogenetic and the cells derived from the male IVF embryos in blastocyst formation, 51 embryos (hatching and hatched) were karyotyped, resulting in 27 embryos having both XX and XY chromosome plates in the same sample, 14 embryos with XY and 10 embryos with XX. The viability and the percentage of zona‐free chimeric embryos at 24 hr following cryopreservation in EG plus T with 10% PVP were significantly greater than those cryopreserved without PVP (89% vs. 56%). Pregnancies were diagnosed in both stations after the transfer of chimeric blastocysts. Twin male (stillbirths) and single chimeric calves were delivered at the Yamaguchi station, with each having both XX and XY chromosomes detected. Three pregnancies resulted from the transferred 40 chimeric embryos at the Louisiana station. Two pregnancies were lost prior to 4 months and one phenotypically‐ chimeric viable male calf was born. We conclude that the IVF‐derived blastomeres were able to stimulate the development of bovine parthenogenetic blastomeres and that the chimeric parthenogenetic bovine embryos were developmentally competent. Mol. Reprod. Dev. 53:159–170, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Summary Bovine granulosa cell — conditioned medium (BGC-CM) was prepared in a serum-free medium consisting of TCM 199, 5μg/ml insulin, and 0.5μg/ml aprotinin (TCM 199 IAP). Granulosa cells surrounded with embryos were denuded 24 to 30 h after in vitro fertilization. The proportion of denuded granulosa cell-free embryos that developed to the blastocyst stage in BGC-CM (43/219; 20%) as well as in the co-culture system (43/178; 24%) was significantly greater (P<0.001) than in fresh TCM 199 IAP medium (FM: 10/191; 5%), whereas the proportion of embryos that developed to the eight-cell stage was similar (P>0.05) in all three culture systems (95/178; 53% in co-culture, 111/219; 51% in BGC-CM, and 86/191; 45% in FM, respectively). Higher rates of hatching and hatched blastocysts 8.5 days after in vitro fertilization were observed in co-culture (13/44; 29.5%) and in conditioned medium (8/39; 20.5%). On the other hand, no hatching or hatched blastocysts were obtained in the fresh medium (0.7; 0%). Cell numbers per blastocyst in BGC-CM (178.3 cells/blastocyst) were approximately two-fold higher than those in FM (97.1 cells/blastocyst). However, higher cell numbers (249.3 cells/blastocyst) were observed in co-culture with BGC than in BGC-CM. The embryotrophic activity in BGC-CM was stable upon freezing and thawing, lyophilization, and heating at 56° C whereas activity was reduced by dilution in fresh medium, dialysis, pronase digestion, and heating at 80° C. These results suggest that BGC cultured in a serum-free medium can synthesize and secrete an embryotrophic factor(s) that supports blastocyst formation in vitro beyond the 8- to 16-cell stage.  相似文献   

5.
The incidence of chromosomal anomalies in early bovine embryos derived from follicular oocytes fertilized in vitro using sperm separated by Percoll density gradient centrifugation was investigated. Overall, chromosomal anomalies were observed in 13.7% (138/1005) of embryos. There were 14 haploids (1.4%), 2 hypodiploids (0.2%), 6 hyperdiploids (0.6%), 101 triploids (10.0%), 12 tetraploids (1.2%), 2 diploid/triploid mosaics (0.2%), and 1 diploid/tetraploid mosaic (0.1%). The frequency of triploidy was caused mainly by polyspermy. There was a significant difference in the frequency of embryos with abnormal chromosomes between the two bulls used (P < 0.005), but Percoll centrifugation did not affect the observed incidence of anomalies. The frequency of chromosomal anomalies in embryos at each stage increased with delay or arrest of development. These results suggest that the incidence of chromosomal anomalies depended on the conditions of in vitro fertilization and the arrest of development.  相似文献   

6.
In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture on bovine embryos, we compared the expression profiles of single blastocysts generated by: (1) in vitro maturation, fertilization and culture (IVF); (2) in vivo maturation, fertilization and in vitro culture (IVD); and (3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367, and 200 genes differentially expressed between the AI and IVD, IVF and IVD, and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category "RNA processing" was over-represented among the genes that were down-regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on the ability to transcribe maternal RNA stores. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI with IVD embryos.  相似文献   

7.
8.
The present study compared the developmental potential and uptake of nutrients by embryos from pre‐pubertal and adult cows. Oocytes retrieved from ovaries of 5 to 7 month old calves and adult cows were matured and fertilized in vitro. Embryos were cultured in SOFaa to the blastocyst stage (7 days post‐insemination). At successive stages of development, rates of glucose and pyruvate uptake were measured non‐invasively by microfluorescence for individual embryos. Fertilization was equivalent in embryos from pre‐pubertal and adult cows (P > 0.05), however development to blastocyst was significantly lower in embryos from pre‐pubertal cows (9.8% versus 33.7%, respectively; P < 0.05). Total blastocyst cell number was not different between pre‐pubertal and adult material (P > 0.05). Glucose uptake was exponential (pre‐pubertal, r = 0.82; adult, r = 0.82; P < 0.05), with an increase in uptake beyond the 8‐ to 16‐cell stage. Glucose uptake was significantly lower in embryos from pre‐pubertal cows at the 2‐ to 4‐cell stages (1.5 versus 3.0 pmoles/embryo/hr; P < 0.05), but was equivalent to the adult cow at all other stages of development (P > 0.05). Pyruvate uptake was low until the blastocyst stage. Pyruvate uptake by embryos from pre‐pubertal cows was significantly different to adult cows at the 1‐cell stage (2.7 versus 4.6 pmoles/embryo/hr, respectively; P < 0.05) and 2‐ to 4‐cell stages (4.9 versus 3.6 pmoles/embryo/hr, respectively; P < 0.05). Pyruvate uptake was equivalent in the two groups in the later stages of development (P > 0.05). Perturbations in the uptake of nutrients by embryos from pre‐pubertal cows were most likely due to the presence of a high proportion of developmentally incompetent embryos. Further, embryos from pre‐pubertal cows that did develop to the blastocyst were as viable as blastocysts from adult cows with respect to nutrient uptakes and total cell number. Mol. Reprod. Dev. 54:49–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
The objective of this study was to compare bovine and ovine oocytes in terms of (1) developmental rates following maturation, fertilization, and culture in vitro, (2) the quality of blastocysts produced in vitro, assessed in terms of their ability to undergo cryopreservation, and (3) the ultrastructural morphology of these blastocysts. In vitro blastocysts were produced following oocyte maturation/fertilization and culture of presumptive zygotes in synthetic oviduct fluid. In vivo blastocysts were used as a control from both species. In Experiment 1, the cleavage rate of bovine oocytes was significantly higher than that of ovine oocytes (78.3% vs. 58.0%, respectively, P < 0.001). The overall blastocyst yield was similar for both species (28.7% vs. 29.0%). However, when corrected for cleavage rate, significantly more ovine oocytes reached the blastocyst stage at all time-points (36.6% vs. 50.0% on day 8, for bovine and ovine, respectively, P < 0.001). Following vitrification, there was no difference in survival between in vivo produced bovine and ovine blastocysts (72 hr: 85.7% vs. 75.0%). However, IVP ovine blastocysts survived at significantly higher rates than IVP bovine blastocysts at all time points (72 hr: 47.4% vs. 18.1%, P < 0.001). At the ultrastructural level, compared with their in vivo counterparts, IVP blastocysts were characterized by a lack of desmosomal junctions, a reduction in the microvilli population, an increase in the average number of lipid droplets and increased debris in the perivitelline space and intercellular cavities. These differences were more marked in bovine IVP blastocysts, which also displayed electron-lucent mitochondria and large intercellular cavities. These observations may in part explain the species differences observed in terms of cryotolerance. In conclusion, the quality of ovine blastocysts was significantly higher than their bovine counterparts produced under identical in vitro conditions suggesting inherent species differences between these two groups affecting embryo quality.  相似文献   

10.
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of bovine zygotes and preimplantation embryos derived from oocyte in vitro maturation (IVM), in vitro fertilization (IVF) and embryo in vitro culture (IVC). The results showed that: a) paternal-specific demethylation occurred in 61.5% of the examined zygotes, while 34.6% of them showed no demethylation; b) decreased methylation level was observed after the 8-cell stage and persisted through the morula stage, however methylation levels were different between blastomeres within the same embryos; c) at the blastocyst stage, the methylation level was very low in inner cell mass, but high in trophectoderm cells. The present study suggests, at least partly, that IVM/IVF/IVC may have effects on DNA methylation reprogramming of bovine zygotes and early embryos.  相似文献   

11.
The time taken to dissolve the zona pellucida was compared with fertilizability as well as the meiotic maturation rate of the oocytes from the same (KE × CBA) F2 females. The presence of granular material in oocyte cytoplasm was also examined. It was found that for F2 females in which the zona pellucida digestion was fast, the number of fertilized oocytes was high; for F2 females with zonae pellucidae more resistant to enzyme, the number of fertilized oocytes was low. The correlation between the two characters was significant, indicating their common genetic and/or physiological control. The low or high solubility of zona pellucida did not correlate with the rate of meiotic maturation of the oocyte. This suggests separate factors controlling these two characters. A separate factor seems to control the appearance of granules in cytoplasm since their presence interfered neither with zona pellucida solubility nor with maturation rate of the oocyte.  相似文献   

12.
Successful in vitro maturation (IVM) of bovine oocytes requires continual and/or episodic protein synthesis by cumulus-oocyte complexes. This study was designed to expose time-dependent changes in protein synthesis and accumulation by bovine oocytes and cumulus cells during routine IVM. Silver staining after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated little if any change in protein species present or their relative contents in oocytes during IVM; one notable exception, however, was the gradual accumulation of a 39-kDa polypeptide between 4–24 hr of maturation culture. Cumulus cells, on the other hand, exhibited no qualitative differences during the period examined, but total protein content did increase during IVM. Metabolic labeling with [35S]-methionine, however, demonstrated changes in protein synthesis, both quantitative and qualitative, by both cell types. Oocytes exhibited a steady or slightly increasing rate of synthesis during the first 12 hr of IVM; thereafter, protein synthesis declined to about 10% of the initial rate by 40 hr in culture. In contrast, protein synthesis in cumulus cells was relatively constant during the first 24 hr. Of greater interest is the demonstration that the synthesis of at least seven oocyte-specific and five cumulus-specific proteins was stage-dependent during maturation. These results indicate that maturation of bovine oocytes is associated with the synthesis of several distinct and temporally expressed proteins which may play roles in the highly ordered sequence of events that culminates in oocyte maturation. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
This study was conducted to examine the hypothesis that nitric oxide (NO) affects prehatching development of bovine oocytes fertilized in vitro. In experiment 1, inseminated oocytes were cultured in a cumulus–granulosa cell (CG) coculture system to which 0.008 or 0.04 mM of sodium nitroprusside (SNP), a spontaneous NO releaser, was added at 18 or 60 hr postinsemination. Embryo development was greatly (P < 0.001) inhibited by the addition of SNP, regardless of time of addition or SNP concentration. In experiment 2, eight-cell embryos were cultured singly in a defined medium, to which 0.0016, 0.008, or 0.04 mM of SNP was added. Development to the blastocyst stage was greatly (P < 0.001) decreased after addition of SNP compared with no addition. Higher (P < 0.02) concentration of NO metabolites was found in developmentally arrested embryos than in developing embryos at 144 hr postinsemination (experiment 3). In experiment 4, blastocyst formation of oocytes cocultured with CGs was significantly (P < 0.02) increased after addition of hemoglobin (Hb, 1 μg/ml), an NO scavenger. Prehatching development of oocytes was significantly (P < 0.05) increased after addition of Hb at different time intervals (18, 60, or 144 hr postinsemination) in experiment 5. Embryo development was not enhanced by Hb addition to the culture medium in the absence of CGs (experiment 6). Prehatching development of eight-cell embryos derived from a Hb-containing culture system was not promoted by the further addition of Hb after transfer of the embryos to a defined and CG-free single-embryo culture system (experiment 7). In conclusion, NO, which may be secreted from CGs, has an inhibitory role in prehatching development of bovine oocytes fertilized in vitro, and use of an NO scavenger, Hb, in a coculture system enhances blastocyst formation. Mol. Reprod. Dev. 50:45–53, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
This study evaluates the levels of messenger RNA (mRNA) for eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1 in oocytes from secondary and antral follicles at different stages of development. The effects of in vitro culture, in vitro prematuration, and in vitro maturation on the expression of these genes on oocytes were also analyzed. The results showed that mRNA levels for H1FOO, GDF9, and PARN were higher in oocytes from small, medium, and large antral follicles, respectively, than those seen in secondary follicles. Oocytes from small, medium, and large antral follicles had higher levels of CCNB1 than oocytes from secondary follicles. Oocytes from cultured secondary follicles had higher levels of GDF9, CMOS, PARN, eIF4E, CCNB1, and H1FOO than before culture. Prematured oocytes from small antral follicles had higher levels of mRNA for GDF9, PARN, and eIF4E than before culture. In addition, higher levels of cMOS and H1FOO were identified in prematured oocytes from medium antral follicles. In conclusion, follicular growth is associated with an increase in the expression of H1FOO, GDF9, CCNB1, and PARN. The culture of secondary follicles, prematuration, and maturation of oocytes from antral follicles increase the expression of eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1.  相似文献   

17.
Single blastomeres from eight-cell stage bovine embryos matured and fertilized in vitro were electrically fused with enucleated oocytes matured in vitro. In experiment 1, The percentage of these reconstituted embryos developed to the two- to eight-cell stage 48 hr after electrofusion was increased when both the eight-cell embryos and the enucleated oocytes were derived from oocytes cultured with granulosa cells (14% vs. 38%). In experiment 2, the relationship between activation of oocytes and developmental ability of reconstituted embryos was examined. Although both ethanol and electrical stimulation efficiently induced parthenogenetic activation of oocytes matured in vitro for 26–28 hr (ethanol, 89%; electrical stimulation, 73%), the ratio of the second polarbody extrusion differed (80% vs. 22%). Ethanol-treated enucleated oocytes, however, were not significantly different from the early cleavage of the reconstituted embryos 48 hr after electrofusion (nontreated, 38%; treated, 43%). In experiment 3, reconstituted embryos at the two- to eight-cell stage 48 hr after the electrofusion were cocultured with granulosa cells for 6–7 days. Of 69 embryos, one developed to a morula and three developed to blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The aim of this study is to examine the effect of bovine oocyte maturation, fertilization or culture in vivo or in vitro on the proportion of oocytes reaching the blastocyst stage, and on blastocyst quality as measured by survival following vitrification. In Experiment 1, 4 groups of oocytes were used: (1) immature oocytes from 2-6 mm follicles; (2) immature oocytes from > 6 mm follicles; (3) immature oocytes recovered in vivo just before the LH surge; and (4) in vivo matured oocytes. Significantly more blastocysts developed from oocytes matured in vivo than those recovered just before the LH surge or than oocytes from 2-6 mm follicles. Results from > 6 mm follicles were intermediate. All blastocysts had low survival following vitrification. In Experiment 2, in vivo matured oocytes were either (1) fertilized in vitro or (2) fertilized in vivo by artificial insemination and the resulting presumptive zygotes recovered on day 1. Both groups were then cultured in vitro. In vivo fertilized oocytes had a significantly higher blastocyst yield than those fertilized in vitro. Blastocyst quality was similar between the groups. Both groups had low survival following vitrification. In Experiment 3a, presumptive zygotes produced by in vitro maturation (IVM)/fertilization (IVF) were cultured either in vitro in synthetic oviduct fluid, or in vivo in the ewe oviduct. In Experiment 3b, in vivo matured/in vivo fertilized zygotes were either surgically recovered on day 1 and cultured in vitro in synthetic oviduct fluid, or were nonsurgically recovered on day 7. There was no difference in blastocyst yields between groups of zygotes originating from the same source (in vivo or in vitro fertilization) irrespective of whether culture took place in vivo or in vitro. However, there was a dramatic effect on blastocyst quality with those blastocysts produced following in vivo culture surviving vitrification at significantly higher rates than their in vitro cultured counterparts. Collectively, these results indicate that the intrinsic quality of the oocyte is the main factor affecting blastocyst yields, while the conditions of embryo culture have a crucial role in determining blastocyst quality.  相似文献   

19.
Embryos of Sminthopsis crassicaudata and Sminthopsis macroura were cultured for up to 96 hours during cleavage and early expansion of the blastocyst in Dulbecco's modified Eagle's medium (DMEG), DMEG containing 2.76 gm/liter sodium lactate (DMEGL), DMEG containing 3.5 gm/liter galactose (DMEGAL), DMEG containing 15 ng/ml progesterone (DMEGP) or 150 ng/ml progesterone (DMEGP10), and DMEGL containing 15 ng/ml progesterone (DMEGLP). The disappearance of sperm was used to indicate the time of ovulation (day 0). Fertilized eggs were found in the uterus at the end of day 1, four-cell stages at the end of day 2, and embryos completing the fourth division by the end of day 3 in S. macroura and day 4 in S. crassicaudata. Estimated developmental times in culture were similar to those obtained in vivo. In both species, the first two divisions take about 24 hours, cleavage is arrested for 24 hours or longer at the rounded four-cell stage, and the third and fourth divisions take a further 24 hours. The blastocyst expands during the next 24 hours in which time the fifth and sixth divisions occur. It was possible to culture embryos from S. macroura but not S. crassicaudata over the four-cell stage to early expanding blastocysts. DMEGAL did not support cleavage in culture. DMEG, DMEGL, DMEGP, DMEGP10, and DMEGLP all supported culture during cleavage and early blastocyst expansion. Blastocyst expansion was slightly enhanced using media containing sodium lactate. More embryos completed the fifth division and formed expanding blastocysts in DMEG, DMEGL, and DMEGLP.  相似文献   

20.
Mouse oocyte development in vitro has been studied in the past several years, but no evidence showed that the fertilizable oocytes could be obtained from the fetal mouse germ cells before the formation of the primordial follicles. In this study, an efficient and simple method has been established to obtain the mature oocytes from the fetal mouse germ cells at 16.5 days post-coitum (dpc). For the initial of follicular formation, fetal mouse 16.5 dpc ovaries were transplanted to the recipient under the kidney capsule, and the ovaries were recovered after 14 days. Subsequently, the growing preantral follicles in the ovarian grafts were isolated and cultured in vitro for 12 days. Practically, the mature oocytes ovulated from the antral follicles were able to be fertilized in vitro and support the embryonic development. The results demonstrate that the fetal mouse 16.5 dpc germ cells are able to form primordial follicles with the ovarian pregranulosa cells during the period of transplantation in the ectopic site, and the oocytes within the growing follicles are able to mature in vitro, then are able to support the embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号