首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of biscopper(II) complexes of the octaaza ligands 5,5-bis(4′-amino- 2′-azabutyl)-l.9-diamino-3,7-diazanonane (tabm) and 6,6-bis(5 ′-amino-2′-azapentyl)-1,11-diamino-4,8-diazaundecane (tapm) is described. The structure of one of the complexes, Cu2(tabm)(NO3)4·6H20, has been determined by single crystal X-ray diffraction techniques - (R = 0.079), space group P21/a, with a = 12.656(3), b= 15.411(6), c= 16.426(5) Å and Z= 4. The copper(II) ions adopt a tetragonally distorted octahedral geometry with the O-Cu-O axes nearly perpendicular. For the Cu2(tapm)(NO3)4 analogue a structure is proposed in which a non-orthogonal arrangement of the O-Cu-O axes is possible. The ESR spectrum (77 K, DMF) of both complexes is discussed and related to the observed and proposed structures and the observed magnetic susceptibilities (μeff = 1.8−1.9,298 K).  相似文献   

2.
The ability of Copper(II)-bleomycin to inhibit oxygen-free-radical damage to biomolecules has been assessed. This copper complex showed inhibitory properties towards iron-catalysed damage to phospholipid membranes and cell-free DNA. It was also able to prevent superoxide-dependent reduction of nitroblue tetrazolium (NBT). Unlike iron, copper-bleomycin does not damage DNA in vitro. This may result from a site-specific dismutation of superoxide radicals on the DNA molecule.  相似文献   

3.
Five new copper(II) complexes of type [Cu(erx)( L )Cl] (erx, enrofloxacin; thiophene‐2‐carbaldehyde ( L 1 ); pyridine‐2‐carbaldehyde ( L 2 ); 2,2′‐dipyridylamine ( L 3 ); 4,5‐diazafluoren‐9‐one ( L 4 ); bis(3,5‐dimethyl‐1‐pyrazolyl)methane ( L 5 )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB‐MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption‐titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the CuII complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC50 values of 0.35–1.25 μM . The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.  相似文献   

4.
Progress of wound healing is critically dependent on the balance between oxidants and antioxidants at the wound site, and transition metals such as iron can exacerbate ROS generation. In the present study, cyanobacterial exopolymers from three strains of Anabaena and Tolypothrix tenuis have been characterized for their antiradical and Fe2+-chelating activity. All the four exopolymers exhibited antioxidant activities against O2·, H2O2, OH·, and NO·, with the exopolymer from Anabaena oryzae showing strong inhibition of NO· and ·OH radicals followed by that from Anabaena anomala. Correlation analysis of antioxidant activities and sulphate, uronic and phenolic content of the exopolymers showed a strong correlation of sulphate content to superoxide scavenging and activity against nitric oxide radicals. H2O2 scavenging was related to the presence of phenolics in the preparation which also contributed to the reducing power. Iron chelation had a strong bearing upon the overall reducing power and superoxide control.  相似文献   

5.
We studied the modulation of superoxide anion (O2·?) and nitric oxide (NO·) generation during human sperm capacitation (changes needed for the acquisition of fertility). The production of NO· (diaminofluorescein-2 fluorescence assay), but not that of O2·? (luminescence assay), related to sperm capacitation was blocked by inhibitors of protein kinase C, Akt, protein tyrosine kinase, etc., but not by those of protein kinase A. Extracellular calcium (Ca2+) controlled O2·? synthesis but extra- and intracellular Ca2+ regulated NO· formation. Zinc inhibited capacitation and formation of O2·? and NO·. Zinc chelators (TPEN and EDTA) and sulfhydryl-targeted compounds (diamide and N-ethylmaleimide) stimulated capacitation and formation of O2·? and NO·; superoxide dismutase (SOD) and nitric oxide synthase inhibitor (L-NMMA) prevented these events. Diphenyliodonium (flavoenzyme inhibitor) blocked capacitation and related O2·? synthesis but promoted NO· formation, an effect canceled by SOD and L-NMMA. NADPH induced capacitation and NO· (but not O2·?) synthesis and these events were blocked by L-NMMA and not by SOD. Integration of these data on O2·? and NO· production during capacitation reinforces the concept that a complex, but flexible, network of factors is involved and probably is associated with rescue mechanisms, so that spermatozoa can achieve successful fertilization.  相似文献   

6.
A series of ternary complexes between adenosine 5′-triphosphoric acid (ATP), 2, 2′-bipyridyl, and the transition metal ions manganese(II), cobalt(II), copper(II), and zinc(II) in the ratio 1:1:1 have been prepared. The solid compounds are crystalline and can be formulated as [M(II)-H2ATP-2, 2′-Bipyridyl]2·4H2O (MATPbipy).X-ray powder patterns show them to be all isomorphous. Potentiometric titrations in aqueous solutions are in agreement with the presence of two ionizable protons. Ultraviolet and visible spectra, epr, and magnetic susceptibility measurements suggest that the metal ions have a high-spin distorted octahedral coordination. From infrared spectra it can be deduced that ATP coordinates to the metal only through the oxygen atoms of the phosphate groups.These compounds, which are particularly stable towards hydrolysis, form possible models for ATP transport in biological fluids.  相似文献   

7.
Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2′-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H2O2. However, without extracellular reductants only weak intracellular ROS generation was observed at IC50 levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor.  相似文献   

8.
The superoxide dismutase-like activities of a series of coordination complexes of copper were evaluated and compared to the activities of bovine erythrocyte superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1) in serum using the nitroblue tetrazolium chloride (NBT)-reduction assay and electron paramagnetic resonance (EPR) spectroscopy. A 40% inhibition was observed for the initial rate of the NBT reduction by superoxide dismutase in serum, but more than 40% inhibition was achieved with CuSO4, Cu(II)-dimethylglyoxime, Cu(II)-3,8-dimethyl-4,7-diazadeca-3,7-dienediamide, Cu2[N,N'-(2-(O-hydroxy-benzhydrylidene)amino)ethyl]2-1,2-ethane dia mine), Cu(II)-(diisopropylsalicylate)2, Cu(II)-(p-bromo-benzoate)2, Cu(II)-(nicotinate)2 and Cu(II)-(1,2-diamino-2-methylpropane)2. The electron paramagnetic resonance technique of spin trapping was used to detect the formation of superoxide (O2-.) and other free radicals in the xanthine-xanthine oxidase system under a variety of conditions. Addition of the spin trapping agent 5,5-dimethylpyrroline 1-oxide (DMPO) to the xanthine-xanthine oxidase system in fetal bovine serum produced the O2-.-spin adduct of DMPO (herein referred to as superoxide spin adduct, DMPO-OOH) as the well known short-lived nitroxyl whose characteristic EPR spectrum was recorded before its rapid decay to undetectable levels. The hydroxyl radical (HO.) adduct of the spin trap DMPO (herein referred to as DMPO-OH) was detected to a very small extent. When CuSO4, or the test complexes of copper, were added to the xanthine-xanthine oxidase system in serum containing the spin trap, the yield of DMPO-OOH was negligible. In addition to their superoxide dismutase-like activity, CuSO4 and the copper complexes also behaved as Fenton-type catalysts as seen by the accumulation of varying amounts of the hydroxyl spin adduct DMPO-OH. Both the Fenton-type catalysis and the superoxide dismutase-like action of these compounds were lost when a chelator such as EDTA was included in the xanthine-xanthine oxidase incubation mixture. Addition of superoxide dismutase instead of the copper compounds to this enzyme system abolished the formation of superoxide adduct DMPO-OOH, and no hydroxyl adduct DMPO-OH was detected. This effect of superoxide dismutase remained unaltered by EDTA.  相似文献   

9.
A series of macrobicyclic mono and binuclear nickel(II) complexes of type [NiL](ClO4) and [Ni2L](ClO4)2, where L is macroyclic ligand derived from the precursor compound 3,4:10,11-dibenzo-1,13[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}diaza]-5,9-dioxocyclopentadecane, have been synthesized in order to examine electrochemical and catalytic studies on the basis of macrocyclic ring size. The macrocycle consists of three dissimilar compartments arising from ether oxygen, tertiary nitrogen and imine nitrogen atoms. Electrochemical studies have shown that the mononuclear nickel(II) complexes undergo quasireversible single step one electron reduction and oxidation and binuclear nickel(II) complexes undergo two quasireversible one electron reduction and oxidation. The EPR silent nature is ascribed to Ni(II) state and all the nickel(II) complexes have square planar geometry and are diamagnetic in nature. The complexes were subjected to hydrolysis of 4-nitrophenyl phosphate and the catalytic activities of the complexes are found to increase with macrocyclic ring size of the complexes. As the macrocyclic ring size of the complexes increases, the spectral, electrochemical and catalytic studies of the complexes show remarkable variation due to distortion in the geometry around the nickel(II) centre.  相似文献   

10.
Abstract

Two new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [H2L1 = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and H2L2 = N′-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand. Molecular docking investigations showed that both complexes could bind to DNA through intercalation of the phenyl rings between adjacent base pairs in the double helix. Meanwhile, bovine serum albumin (BSA) binding studies revealed the complexes could effectively interact with BSA and change the secondary structure of BSA. Further pharmacological evaluations of the synthesized complexes by in vitro antioxidant assays demonstrated high antioxidant activity against NO· and O2˙? radicals. The anticancer activity of each complex was assessed through in vitro cytotoxicity assays (CCK-8 kit) toward A549 and MCF-7 cancer cell and normal L-02 cell lines. Significantly, the Ni(II) complex derived from H2L1 ligand was found to be more effective cytotoxic toward MCF-7cancerous cell with the IC50 value equaled 9.7?μM, which showed potent cytotoxic activity over standard drug cisplatin.

Abbreviations A549 human lung carcinoma cell

BSA bovine serum albumin

CCK-8 Cell Counting Kit-8

DFT density functional theory

DNA deoxyribonucleic acid

DPPH˙ 2,2-diphenyl-1-picrylhydrazyl

H2L1 2-hydroxy-3-methoxybenzylidene)benzohydrazone N′-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone

H2L2 N′-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone

HOMO highest occupied molecular orbital

IC50 the 50% activity

L-02 human normal liver cell

LOMO lowest unoccupied molecular orbital (LUMO)

MCF-7 human breast carcinoma cell

NO˙ nitric oxide

O2˙? superoxide anion

SOD superoxide dismutase

Communicated by Ramaswamy H. Sarma  相似文献   

11.
In this paper are presented the features of copper (II) and zinc (II) heteronuclear complexes of the cyclic peptide—c(HKHGPG)2. The coordination properties of ligand were studied by potentiometric, UV–Vis and CD spectroscopic methods. These experiments were carried out in aqueous solutions at 298 K depending on pH. It turned out that in a physiological pH dominates Cu(II)/Zn(II) complex ([CuZnL]4+) which could mimic the active center of superoxide dismutase (Cu,ZnSOD). In next step we performed in vitro research on Cu,ZnSOD activity for [CuZnL]4+ complex existing in 7.4 pH by the method of reduction of nitroblue tetrazolium (NBT). Also mono- and di-nuclear copper (II) complexes of this ligand were examined. The ability of inhibition free radical reaction were compared for all complexes. The results of these studies show that Cu(II) mono-, di-nuclear and Cu(II)/Zn(II) complexes becoming to new promising synthetic superoxide dismutase mimetics, and should be considered for further biological assays.  相似文献   

12.
Aqueous Cu2+ and Cu(II) complexes of salicylate, lysine, and tyrosine decrease the rate of benzylamine oxidation by bovine plasma amine oxidase. Bissalicylato Cu(II) and Cu2+ inhibit non-competitively with respect to benzylamine. Lysine, tyrosine, Cu(EDTA)2?, Zn2+, and Co2+ do not inhibit, and erythrocyte Cu, Zn superoxide dismutase shows only slight inhibition of the amine oxidase. The data are most consistent with an inhibitory mechanism involving dismutation of O2? by the Cu(II) complexes within a site relatively inaccessible to the enzyme superoxide dismutase. Excess lysine significantly decreases inhibition by the bis-lysine complex of Cu(II).  相似文献   

13.
《Free radical research》2013,47(1):205-210
Using the direct method of pulse radiolysis to determine the superoxide dismutase like activity of copper(II) cimetidine complexes, it was found that the reaction rate constant with O?2, kcat, was (8.5 ± 0.5) × 108 M?1s?1 independent of the cimetidine concentrations present in excess of 50–200 μM over the metal. The results suggest that either the 1:1 ligand to metal complex does not catalyze O?2 dismutation at a comparable rate to that of the 2:1 complex, or that the stability constant of the last species is much higher than that determined earlier by Kimura el al.,1 and only the 2:1 species is present in the solutions. With the indirect methods of cytochrome c and NBT for determining the ability of these complexes to catalyze O?2 dismutation, these compounds exhibited a much lower SOD activity. and kcat was determined to be (5.0 ± 0.3) × 106 and (7.± 0.4) × 101 M?1s?1. respectively using the two assays.  相似文献   

14.
Two bis(1-pyrazolyl)alkane ligands, bis(3,5-dimethyl-1-pyrazolyl)methane and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methane, and their copper(II) complexes, bis(3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL1(NO3)2] and bis(4-iodo-3,5-dimethyl-1-pyrazolyl)methanedinitratocopper(II) [CuL2(NO3)2]·2H2O, were prepared. Physiochemical properties of the copper(II) complexes were studied by spectroscopic (UV–vis, IR, EPR) techniques and cyclic voltammetry. Spectroscopic analysis revealed a 1:1 stoichiometry of ligand:copper(II) ion and a bindentate coordination mode for the nitrate ions in both of the complexes. According to experimental and theoretical ab initio data, the copper(II) ion is located in an octahedral hexacoordinated environment. Both complexes were able to catalyze the dismutation of superoxide anion () (pH 7.5) and decomposition of H2O2 (pH 7.5) and peroxynitrite (pH 10.9). In addition, both complexes exhibited superoxide dismutase (SOD) like activity toward extracellular and intracellular reactive oxygen species produced by activated human neutrophils in whole blood. Thus, these complexes represent useful SOD mimetics with a broad range of antioxidant activity toward a variety of reactive oxidants.  相似文献   

15.
Copper(II) complexes of five peptide ligands containing at least three histidine residues have been tested as catalysts in catechol oxidation and superoxide dismutation. All systems exhibit considerable catechol oxidase-like activity, and the Michaelis–Menten enzyme kinetic model is applicable in all cases. Beside the Michaelis–Menten parameters, the effects of pH, catalyst and dioxygen concentration on the reaction rates are also reported. Considering the rather different sequences, the observed oxidase activity seems to be a general behavior of copper(II) complexes with multihistidine peptides. Interestingly, in all cases {Nim/2Nim,2N?} coordinated complexes are the pre-active species, the bound amide nitrogens were proposed to be an acid/base site for facilitating substrate binding. The studied copper(II)-peptide complexes are also able to effectively dismutate superoxide radical in the neutral pH range.  相似文献   

16.
《Free radical research》2013,47(5):369-380
Reaction of nitric oxide with superoxide anion produces the highly reactive species peroxynitrite (ONOO?). This compound has been shown to be a strong oxidant of lipids and proteins. However, no data are available on its effect on DNA, with the exception of the induction of strand breaks. We report the result of studies on the reactions of peroxynitrite with the adenine and guanine moieties of nucleosides and isolated DNA. The samples were analyzed for 8-oxo-7,8-dihydro-2′-deoxyguano-sine (8-oxo-dGuo), 2,2-diamino-4–[(2-deoxy-β-D-erythro-pentofuranosyl)amino]-5–(2H)-oxazolone (oxazolone) and 8-oxo-7,8-dihydro-2′-deoxyadenosine (8-oxo-dAdo). The effects of peroxynitrite treatment were compared with those of ionizing radiation in aerated aqueous solution, chosen as a source of hydroxyl radicals. At the nucleoside level, both oxidizing conditions led to the formation of oxazolone and 8-oxo-dAdo. In addition, evidence was provided for the formation of the 4R* and 4S* diastereoisomers of 4-hydroxy-8-oxo-4,8-dihydro-2′-deoxyguanosine. The latter dGuo oxidation products were chosen as markers of the release of singlet oxygen (1O2) upon reaction of peroxynitrous acid with hydrogen peroxide. Oxidation of purine bases was then studied within isolated DNA. A significant increase in the level of 8-oxp-dGuo, oxazolone and 8-oxo-dAdo was observed within double stranded DNA upon exposure to γ-radiation. Oxazolone and 8-oxo-dAdo were formed upon peroxynitrite treatment but no significant increase in the amount of 8-oxo-dGuo was detected. These results showed that peroxynitrite exhibits oxidizing properties toward purine moieties both in nucleosides and isolated DNA. However, the significant differences in the oxidative damage distribution within DNA observed after exposure to γ radiation by comparison with peroxynitrite treatment questions the involvement of hydroxyl radicals as the main oxidizing species released by decomposition of peroxynitrous acid.  相似文献   

17.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

18.
Tetrapyridylporphyrins containing four chloro(2,2′-bipyridine)platinum(II) complexes attached at the meta (3-H2TPtPyP) and para (4-H2TPtPyP) positions of the peripheral pyridine ligands were synthesized and their interaction with DNA investigated. The compounds were isolated in the solid state and characterized by means of spectroscopic and analytical techniques. According to molecular simulations, the two isomers exhibit contrasting structural characteristics, consistent with a saddle shape configuration for 3-H2TPtPyP and a planar geometry for 4-H2TPtPyP. Surface plasmon resonance studies were carried out on the interaction of the complexes with calf thymus DNA, revealing a preferential binding of 3-H2TPtPyP, presumably at the DNA major grooves.  相似文献   

19.
《Inorganica chimica acta》1988,153(3):145-153
The blue complexes produced by reaction of cis-diamminediaquoplatinum(II) nitrate, [cis-Pt(NH3)2(H2O)2](NO3)2, with disodium 5′-uridine monophosphate, 5′-UMP(Na2), in H2O and D2O have been investigated by FT-IR spectroscopy. On the basis of the spectral changes observed in the CO stretching region during the reactions, chelation of the amidate N(3)··O(2) moiety to Pt(II) appears to be more likely than N(4)··O(4) chelation. The antisymmetric PO stretching mode of the PO32− group of 5′-UMP splits into a triplet on complex formation indicating that PO32− plays an important role in the structure of the platinum blue complexes. In addition, the sugar moiety of 5′-UMP apparently adopts a predominantly C(3′)-endo conformation in the solid blue complex. Finally, Raman microprobe spectroscopy of the solid provides some evidence for PtN(3) bond formation.  相似文献   

20.
The reaction of xanthosine-5′'-monophosphate disodium salt (5′-XMPNa2) with Pt(II), Cu(II) and Mg(II) ions produced compounds of the type cis- and trans-Pt(NH3)2(XMPNa2)nCl2·xH2O, where n = 1 or 2; Pt(XMPNa2)nCl2·xH2O, where n = 1-4, x = 1,4 & 6; Cu(XMP)·6H2O and Mg(XMP)·xH2O, where x = 9 or 4. In the complexes synthesized here at neutral pH values, the nucleotide binds through the N7-atom of the purine ring system, whereas for Cu(II) and Mg(II) compounds obtained at pH = 4 a direct metal-phosphate interaction as well as Nτ bonding is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号