首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Predation can regulate prey numbers but predator behaviour in multiple-prey systems can complicate understanding of control mechanisms. We investigate killer whale (Orcinus orca) predation in an ocean system where multiple marine mammal prey coexist. Using stochastic models with Monte-Carlo simulations, we test the most likely outcome of predator selection and compare scenarios where killer whales: (1) focus predation on larger prey which presumably offer more energy per effort, (2) generalize by feeding on prey as encountered during searches, or (3) follow a mixed foraging strategy based on a combination of encounter rate and prey size selection. We test alternative relationships within the Hudson Bay geographic region, where evidence suggests killer whales seasonally concentrate feeding activities on the large-bodied bowhead whale (Balaena mysticetus). However, model results indicate that killer whales do not show strong prey specialization and instead alternatively feed on narwhal (Monodon monoceros) and beluga (Delphinapterus leucas) whales early and late in the ice-free season. Evidence does support the conjecture that during the peak of the open water season, killer whale predation can differ regionally and feeding techniques can focus on bowhead whale prey. The mixed foraging strategy used by killer whales includes seasonal predator specialization and has management and conservation significance since killer whale predation may not be constrained by a regulatory functional response.  相似文献   

2.
3.
Killer whale call repertoires can provide information on social connections among groups and populations. Killer whales in Iceland and Norway exhibit similar ecology and behavior, are genetically related, and are presumed to have been in contact before the collapse of the Atlanto-Scandian herring stock in the 1960s. However, photo-identification suggests no recent movements between Iceland and Norway but regular movement between Iceland and Shetland. Acoustic recordings collected between 2005 and 2016 in Iceland, Norway, and Shetland were used to undertake a comprehensive comparison of call repertoires of Northeast Atlantic killer whales. Measurements of time and frequency parameters of calls from Iceland (n = 4,037) and Norway (n = 1,715) largely overlapped in distribution, and a discriminant function analysis had low correct classification rate. No call type matches were confirmed between Iceland and Norway or Shetland and Norway. Three call types matched between Iceland and Shetland. Therefore, this study suggests overall similarities in time and frequency parameters but some divergence in call type repertoires. This argues against presumed past contact between Icelandic and Norwegian killer whales and suggests that they may not have been one completely mixed population.  相似文献   

4.
Resident (fish eating) killer whales (Orcinus orca) in the North Pacific have been the subject of long‐term studies in several geographical regions. The current study examines population parameters in the southern Alaska resident population from 1984 to 2010 and develops a population model. The southern Alaska resident population ranges from southeastern Alaska through the Kodiak archipelago and contains over 700 individuals. We follow the life histories of 343 identifiable whales in 10 pods from two clans born before and during the study. Population parameters were comparable to those of the British Columbia northern resident population during the 1970s and 1980s, except that age of maturity was approximately one year earlier. The average annual rate of increase was slightly higher in Alaska (3.5%) than for the British Columbia northern residents (2.9%) and probably represents a population at r‐max (maximum rate of growth). Reasons for the high growth rate in Alaska could be a recovery following past anthropogenic mortalities, or more likely, a response to increasing salmon returns in recent decades, resulting in an increase in carrying capacity. The slow maturation and low rate of reproductive response makes these whales slow to recover from natural or anthropogenic catastrophes.  相似文献   

5.
6.
Killer whales (Orcinus orca) occur in the eastern Canadian Arctic during the open-water season, but their seasonal movements in Arctic waters and overall distribution are poorly understood. During August 2009, satellite transmitters were deployed onto two killer whales in Admiralty Inlet, Baffin Island, Canada. A whale tracked for 90 days remained in Admiralty and Prince Regent Inlets from mid-August until early October, when locations overlapped aggregations of marine mammal prey species. While in Admiralty and Prince Regent Inlets, the whale traveled 96.1 ± 45.3 km day−1 (max 162.6 km day−1) and 120.1 ± 44.5 km day−1 (max 192.7 km day−1), respectively. Increasing ice cover in Prince Regent Inlet in late September and early October was avoided, and the whale left the region prior to heavy ice formation. The whale traveled an average of 159.4 ± 44.8 km day−1 (max 252.0 km day−1) along the east coast of Baffin Island and into the open North Atlantic by mid-November, covering over 5,400 km in approximately one month. This research marks the first time satellite telemetry has been used to study killer whale movements in the eastern Canadian Arctic and documents long-distance movement rarely observed in this species.  相似文献   

7.
Killer whales (Orcinus orca) are widely distributed throughout the world's oceans, yet little has been documented about their stranding patterns. Knowledge of stranding patterns improves our ability to examine and sample carcasses and provides a foundation for understanding killer whale natural history, diet, reproduction, anthropogenic stressors, emerging diseases, and patterns of unusual mortality. We compiled published and unpublished killer whale stranding data to describe stranding patterns in the North Pacific Ocean. Between 1925 and 2011, 371 stranded killer whales were reported in Japan (20.4%), Russia (3.5%), Alaska (32.0%), British Columbia (27.4%), Washington (4.0%), Oregon (2.7%), California (5.1%), Mexico (3.8%), and Hawaii (0.8%). Strandings occurred at all times of year, but regionally specific seasonal differences were observed. Mortality and annual census data from Northern and Southern Resident populations were extrapolated to estimate that across the North Pacific, an average of 48 killer whales die annually. However, over the last two decades, an average of only 10 killer whale carcasses were recovered annually in this ocean, making each event a rare opportunity for study. Publication of a standardized killer whale necropsy protocol and dedicated funding facilitated the number of complete postmortem necropsies performed on stranded killer whales from 1.6% to 32.2% annually.  相似文献   

8.
Human activities have placed populations of many endangered species at risk and mitigation efforts typically focus on reducing anthropogenic sources of mortality. However, failing to recognize the additional role of environmental factors in regulating birth and mortality rates can lead to erroneous demographic analyses and conclusions. The North Atlantic right whale population is currently the focus of conservation efforts aimed at reducing mortality rates associated with ship strikes and entanglement in fishing gear. Consistent monitoring of the population since 1980 has revealed evidence that climate‐associated changes in prey availability have played an important role in the population's recovery. The considerable interdecadal differences observed in population growth coincide with remote Arctic and North Atlantic oceanographic processes that link to the Gulf of Maine ecosystem. Here, we build capture‐recapture models to quantify the role of prey availability on right whale demographic transitional probabilities and use a corresponding demographic model to project population growth rates into the next century. Contrary to previous predictions, the right whale population is projected to recover in the future as long as prey availability and mortality rates remain within the ranges observed during 1980–2012. However, recent events indicate a northward range shift in right whale prey, potentially resulting in decreased prey availability and/or an expansion of right whale habitat into unprotected waters. An annual increase in the number of whale deaths comparable to that observed during the summer 2017 mass mortality event may cause a decline to extinction even under conditions of normal prey availability. This study highlights the importance of understanding the oceanographic context for observed population changes when evaluating the efficacy of conservation management plans for endangered marine species.  相似文献   

9.
Understanding the population structure of a species is critical to its effective management and conservation. The humpback whale ( Megaptera novaeangliae ) has been the target of numerous research projects in several ocean basins, but no clear picture of its population structure has emerged. In the North Atlantic Ocean, genetic analyses and photo-identification movements have shown significant heterogeneity among the summer feeding grounds. Building on this knowledge, we test the hypothesis that the feeding grounds represent distinct populations by analyzing the spatial pattern of summer humpback whale sightings and survey effort. Controlling for the spatial pattern of effort, sightings are clustered, with peaks at radial distances of 300 km, 600 km, and 1,500 km. These results provide insight into the spatial extent of the summer population structure of humpback whales in the North Atlantic Ocean. Fine-scale clustering at distances of 300 km and 600 km is compatible with multiple populations consisting of the Gulf of Maine, eastern Canada, western Greenland, and Iceland. Broad-scale clustering at distances of 1,500 km may represent divisions between the western and eastern North Atlantic populations. These results provide spatial bounds to the feeding grounds of humpback whales and emphasize their distinct nature as management units.  相似文献   

10.
Sympatric forms of ecologically distinctive killer whales (Orcinus orca) have been documented worldwide. This study focused on a new case of such sympatric occurrence of the “Crozet” type and the recently described “type D” killer whales off the Crozet Islands. The two ecotypes are morphologically and genetically distinct, but they both depredate the same local longline fishery. We used observational, photo‐identification, and fishing data, collected between 2003 and 2015, to examine differences in their patterns of depredation. Of the 828 sets where ecotype could be confirmed, type D killer whales interacted with 82 (11%) of the sets, including 9 (1%) sets that were simultaneously depredated by both ecotypes. Associations between the two types were never observed. Type D killer whales typically occurred in larger groups and both ecotypes preferentially depredated Patagonian toothfish (Dissostichus eleginoides). GLMM modeling revealed that the probability of type D depredation significantly increased throughout the study period, especially in deep waters, and photo‐identification data suggested that a subset of all individuals were habituating to depredation. This study documents the partitioning of resources between two distinct ecotypes of killer whales and provides preliminary insight into the feeding ecology of the rare type D killer whale.  相似文献   

11.
Estimates of abundance and survivorship provide quantifiable measures to monitor populations and to define and understand their conservation status. This study investigated changes in abundance and survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence in the context of anthropogenic pressures and changing environmental conditions. A long‐term data set, consisting of 35 years of photo‐identification surveys and comprising more than 5,000 identifications of 507 individuals, formed the basis of this mark–recapture study. Based on model selection using corrected Akaike Information Criterion, the most parsimonious Cormack–Jolly–Seber model included a linear temporal trend in noncalf apparent survival rates with a sharp decline in the last 5 years of the study and a median survival rate of 0.946 (95% confidence interval (CI) 0.910–0.967). To account for capture heterogeneity due to divergent patterns of site fidelity, agglomerative hierarchical cluster analysis was employed to categorize individuals based on their annual and survey site fidelity indices. However, the negative trend in survivorship remained and was corroborated by a significant decline in the estimated super‐population size from 335 (95% CI 321–348) individuals in 2004–2010 to 291 (95% CI 270–312) individuals in 2010–2016. Concurrently, a negative trend was estimated in recruitment to the population, supported by a sharp decrease in the number of observed calves. Ship strikes and changes in prey availability are potential drivers of the observed decline in fin whale abundance. The combination of clustering methods with mark–recapture represents a flexible way to investigate the effects of site fidelity on demographic variables and is broadly applicable to other individual‐based studies.  相似文献   

12.
A disparate selection of toothed whales (Odontoceti) share striking features of their acoustic repertoires including the absence of whistles and high frequency but weak (low peak-to-peak source level) clicks that have a relatively long duration and a narrow bandwidth. The non-whistling, high frequency click species include members of the family Phocoenidae, members of one genus of delphinids, Cephalorhynchus, the pygmy sperm whale, Kogia breviceps, and apparently the sole member of the family Pontoporiidae. Our review supports the 'acoustic crypsis' hypothesis that killer whale predation risk was the primary selective factor favouring an echolocation and communication system in cephalorhynchids, phocoenids and possibly Pontoporiidae and Kogiidae restricted to sounds that killer whales hear poorly or not at all (< 2 and > 100 kHz).  相似文献   

13.
Benthic species and communities are linked to pelagic zooplankton through life‐stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state‐space models to long (1966–2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment‐dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.  相似文献   

14.
15.
Investigating intraspecific variation in acoustic signals can indicate the extent of isolation and divergence between populations and adaptations to local environments. Here we analyze the variation in killer whale high‐frequency (>17 kHz) whistles recorded off Norway, Iceland, and in the North Pacific. We used a combination of methods including multivariate comparisons of spectral and temporal parameters and categorization of contours to types. Our results show that spectral and temporal characteristics of high‐frequency whistles recorded in the North Pacific show significant differences from whistles recorded in the Northeast Atlantic, being generally stereotyped, lower in frequency, and slightly longer in duration. Most high‐frequency whistles from the North Pacific were downsweeps, whereas this was one of the least common types recorded in the Northeast Atlantic. The repertoire of whistles recorded in Norway was similar to Iceland, but whistles produced in Norway had significantly lower maximum frequency and frequency range. Most methods were able to discriminate between whistles of the North Pacific and the Northeast Atlantic, but were unable to consistently distinguish whistles from Iceland and Norway. This suggests that macro‐ and microgeographic differences in high‐frequency whistles of killer whales may reflect historical geographic isolation between ocean basins and more recent divergence between adjacent populations.  相似文献   

16.
Accurate estimates of drag on marine animals are required to investigate the locomotive cost, propulsive efficiency, and the impacts of entanglement if the animal is carrying fishing gear. In this study, we performed computational fluid dynamics analysis of a 10 m (length over all) right whale to obtain baseline measurements of drag on the animal. Swimming speeds covering known right whale speed range (0.125 m/s to 8 m/s) were tested. We found a weak dependence between drag coefficient and Reynolds number. At a swimming speed of 2 m/s, we analyzed the boundary layer thicknesses, the flow regimes, and drag components. We found the thickest boundary layer at the lateral sides of the peduncle, whereas the boundary layer thickness over the outer part of the flukes was less than 1.7 cm. Laminar flow occurred over the anterior ~0.6 LoA and turbulent flow from ~0.8 LoA to the fluke notch. On the surfaces of the flukes outside of the body wake region, flow was laminar. Our most significant finding is that the drag coefficient (0.0071–0.0059) of a right whale for swimming speeds ranging from 0.25 m/s to 2 m/s is approximately twice that of many previous estimates for cetaceans.  相似文献   

17.
AimHabitat loss and fragmentation impose high extinction risk upon endangered plant species globally. For many endangered plant species, as the remnant habitats become smaller and more fragmented, it is vital to estimate the population spread rate of small patches in order to effectively manage and preserve them for potential future range expansion. However, population spread rate has rarely been quantified at the patch level to inform conservation strategies and management decisions. To close this gap, we quantify the patch‐specific seed dispersal and local population dynamics of Minuartia smejkalii, which is a critically endangered plant species endemic in the Czech Republic and is of urgent conservation concern.LocationŽelivka and Hrnčíře, Czechia.MethodsWe conducted demographic analyses using population projection matrices with long‐term demographic data and used an analytic mechanistic dispersal model to simulate seed dispersal. We then used information on local population dynamics and seed dispersal to estimate the population spread rate and compared the relative contributions of seed dispersal and population growth rate to the population spread rate.ResultsWe found that although both seed dispersal and population growth rate in M. smejkalii were critically limited, the population spread rate depended more strongly on the maximal dispersal distance than on the population growth rate.Main conclusionsWe recommend conservationists to largely increase the dispersal distance of M. smejkalii. Generally, efforts made to increase seed dispersal ability could largely raise efficiency and effectiveness of conservation actions for critically endangered plant species.  相似文献   

18.
Many pinniped populations precipitously declined during the 19th and 20th centuries due to overharvesting. In Uruguay, the South American sea lion (SASL) was harvested until 1986. Birth rates in two nearby breeding colonies have had opposite trends for at least 20 yr. We assessed different mechanisms that could explain opposite trends in birth rates in the two SASL colonies. We compared feeding habits (δ15N and δ13C) of breeding females, birth mass, individual growth rate and early survival of pups and the social structure between colonies. Breeding females from the two colonies did not differ in their feeding habits. However, male and female pups grew faster but had a lower survival in the second month in the smallest colony. We found differences in the social structures, with a higher proportion of males in the smallest colony. The latter is important because peripheral SASL males may abduct and kill pups, which may explain the lower survival of pups in smaller colonies. We believe that the cumulative effects of population extractions have lowered the local SASL population size and disrupted its social structure to the point where Allee‐like effects could become important and hamper the recovery of the Uruguayan SASL population.  相似文献   

19.
The Southern Ocean has been disproportionately affected by climate change and is therefore an ideal place to study the influence of changing environmental conditions on ecosystems. Changes in the demography of predator populations are indicators of broader shifts in food web structure, but long‐term data are required to study these effects. Southern elephant seals (Mirounga leonina) from Macquarie Island have consistently decreased in population size while all other major populations across the Southern Ocean have recently stabilized or are increasing. Two long‐term mark‐recapture studies (1956–1967 and 1993–2009) have monitored this population, which provides an opportunity to investigate demographic performance over a range of climatic conditions. Using a 9‐state matrix population model, we estimated climate influences on female survival by incorporating two major climatic indices into our model: The Southern Annular Mode (SAM) and the Southern Oscillation Index (SOI). Our best model included a 1 year lagged effect of SAM and an unlagged SOI as covariates. A positive relationship with SAM1 (lagged) related the previous year''s SAM with juvenile survival, potentially due to changes in local prey availability surrounding Macquarie Island. The unlagged SOI had a negative effect on both juvenile and adult seals, indicating that sea ice dynamics and access to foraging grounds on the East Antarctic continental shelf could explain the different contributions of ENSO events on the survival of females in this population.  相似文献   

20.
Population estimates of the critically endangered North Atlantic right whale (Eubalaena glacialis) put the number of individuals at 458 with the actual number likely being lower due to a recent unusual mortality event. Entanglement with fixed fishing gear is the most significant cause of mortality of North Atlantic right whales. There remains little documentation of how North Atlantic right whales become enwrapped during an encounter with fixed fishing gear. In order to gain a better understanding of how entanglements might occur, an interactive simulator was developed that allows the user to swim a virtual whale model using a standard game controller through a gear field in an attempt to re‐create an entanglement. The morphologically accurate right whale model produces realistic swimming motions and is capable of pectoral fin motions in response to user input. Using the simulator, gear entanglements involving the pectoral flippers including ropes wrapping around the body and entanglements involving the tailstock were re‐created. Entanglements involving the pectoral flippers with body wraps were more easily generated than entanglements involving the tailstock only. The simulator should aid scientists, fisheries experts, fishing gear designers, and bycatch reduction scientists in understanding entanglement dynamics and testing potential new gear configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号