首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yes‐associated protein (YAP) is a main mediator of the Hippo pathway and promotes cancer development and progression in human lung cancer. We sought to determine whether inhibition of YAP suppresses metastasis of human lung adenocarcinoma in a murine model. We found that metastatic NSCLC cell lines H2030‐BrM3(K‐rasG12C mutation) and PC9‐BrM3 (EGFRΔexon19 mutation) had a significantly decreased p‐YAP(S127)/YAP ratio compared to parental H2030 (K‐rasG12C mutation) and PC9 (EGFRΔexon19 mutation) cells (P < .05). H2030‐BrM3 cells had significantly increased YAP mRNA and expression of Hippo downstream genes CTGF and CYR61 compared to parental H2030 cells (P < .05). Inhibition of YAP by short hairpin RNA (shRNA) and small interfering RNA (siRNA) significantly decreased mRNA expression in downstream genes CTGF and CYR61 in H2030‐BrM3 cells (P < .05). In addition, inhibiting YAP by YAP shRNA significantly decreased migration and invasion abilities of H2030‐BrM3 cells (P < .05). We are first to show that mice inoculated with YAP shRNA‐transfected H2030‐BrM3 cells had significantly decreased metastatic tumour burden and survived longer than control mice (P < .05). Collectively, our results suggest that YAP plays an important role in promoting lung adenocarcinoma brain metastasis and that direct inhibition of YAP by shRNA suppresses H2030‐BrM3 cell brain metastasis in a murine model.  相似文献   

2.
在人的某些癌症细胞中,组蛋白H3K27me3甲基化酶EZH2基因存在过表达的现象,很多研究已经证明,这可能是受MEK ERK信号通路调控的.为了确定这种调控模式在小鼠细胞系中是否同样存在,以及MEK ERK信号通路是否同时调控H3K27me3甲基化酶EZH1基因和去甲基化酶UTX、JMJD3基因的表达,用RT PCR和Western印迹方法检测不同浓度的MEK ERK抑制剂U0126(0、10、20、40 μmol/L)对C2C12、C127、NIH3T3三种小鼠细胞系处理后,EZH1、EZH2基因和UTX、JMJD3基因表达变化.结果显示:MEK-ERK抑制剂处理后,3种细胞中EZH1和EZH2基因的表达与对照相比都有不同程度的降低,其中EZH2基因表达变化在C2C12、NIH3T3两种细胞达到显著水平(P<0.05). H3K27me3去甲基化酶UTX、JMJD3基因在3种细胞中表达均有升高,JMJD3升高达到显著水平(P<0.05).因此,在小鼠细胞系MEK ERK信号通路可能参与调控EZH2、JMJD3基因的表达,但对EZH1、UTX基因的表达调控作用不明显.
关键词MEK ERK信号通路;  相似文献   

3.
Studies in cultured cells have shown that nuclear shape is an important factor influencing nuclear function, and that mechanical forces applied to the cell can directly affect nuclear shape. In a previous study, we demonstrated that stretching of whole mouse subcutaneous tissue causes dynamic cytoskeletal remodeling with perinuclear redistribution of α-actin in fibroblasts within the tissue. We have further shown that the nuclei of these fibroblasts have deep invaginations containing α-actin. In the current study, we hypothesized that tissue stretch would cause nuclear remodeling with a reduced amount of nuclear invagination, measurable as a change in nuclear concavity. Subcutaneous areolar connective tissue samples were excised from 28 mice and randomized to either tissue stretch or no stretch for 30 min, then examined with histochemistry and confocal microscopy. In stretched tissue (vs. non-stretched), fibroblast nuclei had a larger cross-sectional area (P < 0.001), smaller thickness (P < 0.03) in the plane of the tissue, and smaller relative concavity (P < 0.005) indicating an increase in nuclear convexity. The stretch-induced loss of invaginations may have important influences on gene expression, RNA trafficking and/or cell differentiation.  相似文献   

4.
5.
Zbed3, a BED finger domain-containing protein was found to promote cancer proliferation by regulating β-catenin expression through interacting with Axin. But whether and how BED finger domain function in regulating cancer proliferation is unknown. We constructed five mutants of Zbed3, which lacks the Axin-Zbed3 binding site, and the 43 to 52, 69 to 77, 87 to 92, and 97 to 104 sequences in BED finger domain, respectively and named them as Z-A, Z1, Z2, Z3, and Z4. Transfection of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05), but not Z2 (P > 0.05) significantly upregulated β-catenin expression in NCI-H1299 cells. Overexpression of both wild-type of Zbed3 and the mutants Z1, Z3, and Z4 (P < 0.05) but not Z2 (P > 0.05) significantly promoted cancer cell proliferation and invasion. The ability of proliferation (P < 0.05) but not invasion (P < 0.05) of cancer cells transfected with Z1 and Z4 was significantly lower than that with wild-type Zbed3 and Z3. Overexpression of wild-type Zbed3 (P < 0.05) but not the mutant Z-A, which lacks the binding site with Axin and Z2 (P > 0.05) significantly upregulated the interaction of Axin and Zbed3, β-catenin expression and the activity of Wnt signaling. Both overexpression of wild-type Zbed3 and the mutant Z1 and Z4 significantly upregulated the activity of Wnt signaling and promoted cancer cell proliferation (P < 0.05) but only overexpression of wild-type Zbed3 (P < 0.05), but not the mutant Z1, and Z4 (P > 0.05), significantly upregulated the expression of proliferating cell nuclear antigen (PCNA) in NCI-H1299 cells. These results indicate that Zbed3 may promote lung cancer cell proliferation through regulating PCNA expression besides regulating β-catenin expression and BED finger domain can impact on this function.  相似文献   

6.
K-Ras-negative fibroblasts are defective in their steady-state expression of MMP-2. This occurs through c-K(B)-Ras dependent regulation of basal levels of AKT activity. In this report, we have extended those studies to demonstrate that in the absence of K-Ras expression, PDGF-BB fails to induce significant AKT activation, although this was not the case in N-Ras-negative cells. This phenotype was directly linked to PDGF-dependent cell migration. All of the independently immortalized K-Ras-negative cells failed to migrate upon the addition of PDGF. Only ectopic expression of c-K(B)-Ras, not c-K(A)-Ras nor oncogenic N-Ras, could restore both PDGF-dependent AKT activation and cell migration. Since most Ras binding partners can interact with all Ras isoforms, the specificity of PDGF-dependent activation of AKT and enhanced cell migration suggests that these outcomes are likely to be regulated through a c-K(B)-Ras-specific binding partner. Others have published that of the four Ras isoforms, only K(B)-Ras can form a stable complex with calmodulin (CaM). Along those lines, we provide evidence that 1) PDGF addition results in increased levels of a complex between c-K(B)-Ras and CaM and 2) the biological outcomes that are strictly dependent on c-K(B)-Ras (AKT activation and cell migration) are blocked by CaM antagonists. The PDGF-dependent activation of ERK is unaffected by the absence of K(B)-Ras and presence of CaM antagonists. This is the first example of a linkage between a specific biological outcome, cell migration, and the activity of a single Ras isoform, c-K(B)-Ras.  相似文献   

7.
We investigated the role of wild-type p53 and c-myc activity in apoptosis induced by a combination of natural human tumor necrosis factor alpha (TNF-α) and natural human interferon alpha (IFN-α). Studies were performed with two human non–small-cell lung cancer cell lines, H226b, which has wild-type p53, and H226br, which has a mutant p53. The combination of IFN-α and TNF-α significantly inhibited cell growth and induced apoptotic cell death of both H226b and H226br, compared with IFN-α or TNF-α alone. Treatment with one or both cytokines did not affect the expression level of p53 in both cell lines. These results suggest that the combination of IFN-α/TNF-α induces apoptotic cell death through a p53- independent pathway. The c-myc oncogene is known to be involved in apoptosis induced by TNF. Antisense c-myc oligonucleotides have been reported to modulate cell growth or apoptosis in several cell lines. Antisense oligodeoxynucleotides were added to the culture of H226br cells before the addition of IFN-α/TNF-α. Antisense c-myc inhibited IFN-α/TNF-α cytotoxicity and apoptotic cell death. In conclusion, this study provides support for the speculation that TNF-α/IFN-α induce apoptosis through a c-myc–dependent pathway rather than a p53-dependent pathway.  相似文献   

8.
Immune cell apoptosis may play a role in human persistent Helicobacter pylori infection. We planned to study the apoptosis of T and B cells by H. pylori strains. T (Jurkat) and B (Raji) cell lines were co-cultured with cagA-positive H. pylori strains carrying different vacA genotypes (s1a/m1, s1a/m2, and s2/m2). Apoptosis was detected by microscopy, DNA fragmentation assay, and flow cytometry. Apoptosis-inducing factor (AIF) transfer from mitochondria to nucleus was studied by immunoblot analysis. Apoptosis of T and B cells was significantly higher in H. pylori-infected cells than in uninfected controls (s1a/m1 80%, s1a/m2 78%, s2m2 69% vs. control 16% for T cells, P < 0.001; s1 a/m1 78%, s1a/m2 73%, s2m2 62% vs. control 24% for B cells, P < 0.001 by flow cytometry) with no difference among the genotypes. AIF transfer from mitochondria to nucleus was demonstrated in both apoptotic cell lines. Thus, H. pylori induces apoptosis in T- and B-cell lines and translocates AIF. T and B cells deletion through apoptosis may explain the persistence of H. pylori infection; its role in pathogenesis needs further research.  相似文献   

9.
Summary A series of five discrete virus replicating insect cell lines were isolated from the ovarian and fat body tissues ofHeliothis zea pupae. Two of these cell lines (IPLB-HZ-1075 and-HZ-1079) were studied in depth as to their growth and virus replication responses to specific nutrients (acetyl-β-methylcholine, fresh glutamine) in a number of media. The same two cell lines were identified to species by serological (microimmunodiffusion) and isozyme (phosphoglucoisomerase and peptidase:glycyl-leucine) techniques. Distinguishing comparisons were made with other cell lines that have been confused with the present lines in the literature and with cell line and host pupal extracts from the same and other lepidopteran species studied concurrently in this laboratory. Sterility culture tests were negative for mycoplasmas. The present fiveH. zea lines were the first insect cell lines to replicate polyhedra from a unicapsid multiple embedded nuclear polyhedrosis virus (Baculovirus Group A), in this case the homologous virus obtained from larvae ofH. zea.  相似文献   

10.
11.
12.
Epithelial ovarian cancer (EOC) is the leading cause of gynecological-related cancer deaths in the United States. There is, therefore, an urgent need to develop novel therapeutic strategies for this devastating disease. Cellular senescence is a state of stable cell growth arrest that acts as an important tumor suppression mechanism. Ribonucleotide reductase M2 (RRM2) plays a key role in regulating the senescence-associated cell growth arrest by controlling biogenesis of 2'-deoxyribonucleoside 5′-triphosphates (dNTPs). The role of RRM2 in EOC remains poorly understood. Here we show that RRM2 is expressed at higher levels in EOCs compared with either normal ovarian surface epithelium (P &lt; 0.001) or fallopian tube epithelium (P &lt; 0.001). RRM2 expression significantly correlates with the expression of Ki67, a marker of cell proliferation (P &lt; 0.001). Moreover, RRM2 expression positively correlates with tumor grade and stage, and high RRM2 expression independently predicts a shorter overall survival in EOC patients (P &lt; 0.001). To delineate the functional role of RRM2 in EOC, we knocked down RRM2 expression in a panel of EOC cell lines. Knockdown of RRM2 expression inhibits the growth of human EOC cells. Mechanistically, RRM2 knockdown triggers cellular senescence in these cells. Notably, this correlates with the induction of the DNA damage response, a known mediator of cellular senescence. These data suggest that targeting RRM2 in EOCs by suppressing its activity is a novel pro-senescence therapeutic strategy that has the potential to improve survival of EOC patients.  相似文献   

13.
Cerebral cavernous malformations (CCM) are vascular anomalies caused by mutations in genes encoding KRIT1, OSM and PDCD10 proteins causing hemorrhagic stroke. We examine proteomic change of loss of CCM gene expression. Using human umbilical vein endothelial cells, label-free differential protein expression analysis with multidimensional liquid chromatography/tandem mass spectrometry was applied to three CCM protein knockdown cell lines and two control cell lines: ProteomeXchange identifier PXD000362. Principle component and cluster analyses were used to examine the differentially expressed proteins associated with CCM. The results from the five cell lines revealed 290 and 192 differentially expressed proteins (p < 0.005 and p < 0.001, respectively). Most commonly affected proteins were cytoskeleton-associated proteins, in particular myosin-9. Canonical genetic pathway analysis suggests that CCM may be a result of defective cell–cell interaction through dysregulation of cytoskeletal associated proteins. Conclusion: The work explores signaling pathways that may elucidate early detection and novel therapy for CCM.  相似文献   

14.
Numerous investigations have reported the efficacy of exogenous hyaluronan (HA) in modulating acute and chronic inflammation. The current study was performed to determine the in vitro effects of lower and higher molecular weight HA on lipopolysaccharide (LPS)-challenged fibroblast-like synovial cells. Normal synovial fibroblasts were cultured in triplicate to one of four groups: group 1, unchallenged; group 2, LPS-challenged (20 ng/ml); group 3, LPS-challenged following preteatment and sustained treatment with lower molecular weight HA; and group 4, LPS-challenged following pretreatment and sustained treatment with higher molecular weight HA. The response to LPS challenge and the influence of HA were compared among the four groups using cellular morphology scoring, cell number, cell viability, prostaglandin E2 (PGE2) production, IL-6 production, matrix metalloproteinase 3 (MMP3) production, and gene expression microarray analysis. As expected, our results demonstrated that LPS challenge induced a loss of characteristic fibroblast-like synovial cell culture morphology (P < 0.05), decreased the cell number (P < 0.05), increased PGE2 production 1,000-fold (P < 0.05), increased IL-6 production 15-fold (P < 0.05), increased MMP3 production threefold (P < 0.05), and generated a profile of gene expression changes typical of LPS (P < 0.005). Importantly, LPS exposure at this concentration did not alter the cell viability. Higher molecular weight HA decreased the morphologic change (P < 0.05) associated with LPS exposure. Both lower and higher molecular weight HA significantly altered a similar set of 21 probe sets (P < 0.005), which represented decreased expression of inflammatory genes (PGE2, IL-6) and catabolic genes (MMP3) and represented increased expression of anti-inflammatory and anabolic genes. The molecular weight of the HA product did not affect the cell number, the cell viability or the PGE2, IL-6, or MMP3 production. Taken together, the anti-inflammatory and anticatabolic gene expression profiles of fibroblast-like synovial cells treated with HA and subsequently challenged with LPS support the pharmacologic benefits of treatment with HA regardless of molecular weight. The higher molecular weight HA product provided a cellular protective effect not seen with the lower molecular weight HA product.  相似文献   

15.
Development of a transgenic porcine biomedical research model requires effective delivery of DNA into the donor cell followed by selection of genetically modified somatic cell lines to be used for nuclear transfer. The objective of the current study was 2-fold: (1) to compare the effectiveness of a single 1 ms pulse of different voltages (V; 100, 150, 200, 250, 300, 350) and multiple 1 ms pulses (1, 2, 3, 4 or 5) at 300 V for delivery and expression of super-coiled GFP vector in surviving cells of three fetal fibroblast cell lines, and (2) to determine the ability of these electroporation parameters to produce stably transfected fibroblast colonies following G418 selection. Cell line (P < 0.001) and voltage (P < 0.001) affected DNA delivery into the cell as assessed by GFP expression while survival at 24 h was affected by voltage (P < 0.001) and not by cell line (P = 0.797). Using a single pulse while increasing voltage resulted in the percentage of GFP expressing cells increasing from 3.2 ± 0.8% to 43.0 ± 3.4% while survival decreased from 90.5 ± 8.0% to 44.8 ± 2.0%. The number of pulses at 300 V significantly affected survival (P < 0.001) and GFP expression (P < 0.001). Survival steadily decreased following 1–5 pulses from 63.2 ± 6.3% to 3.0 ± 0.3% with GFP expression of surviving cells increasing from 35.6 ± 2.67% to 71.4 ± 6.1%. Electroporation of a selectable marker at a 1:1 copy number ratio to a co-electroporated transgene resulted in 83% of G418 resistant colonies also being PCR positive for the secondary transgene. These electroporation conditions, specifically, three 1 ms pulses of 300 V to 200 μL of 1 × 106 cells/mL in the presence of 12.5 μg DNA/mL effectively introduced DNA into somatic cells. The utilization of these conditions produced numerous transgenic fibroblast colonies following G418 selection that when used for somatic cell nuclear transfer resulted in the production of live offspring.  相似文献   

16.
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor that regulates adipogenesis and many other biological processes. In the present study, we carried out PCR–SSCP and DNA sequencing analyses to examine SNPs in coding region of the PPARγ gene. A total of 660 individuals from five Chinese cattle breeds were genotyped. We identified three SNPs and their associations with meat quality traits were analyzed in 108 Qinchuan cattle. Two missense mutations and one synonymous mutation were found: 200 A > G (genotypes AA, AB and BB) resulting in D7G change, the silent substitution 42895 C > T (genotypes JJ and JI) and 72472 G > T (genotypes CC, DC and DD) producing Q448H change, respectively. The frequencies of PPARγ-A allele were 0.86, 0.83, 0.80, 0.72 and 0.87 for Qinchuan, Nanyang, Jiaxian, Luxi and Xianan populations, respectively. The frequencies of PPARγ-J allele varied from 0.87 to 0.96 in the five populations. In the 72472 G > T locus, the frequencies of PPARγ-C allele were higher than PPARγ-D allele in the five populations, and ranged from 0.58 to 0.82. Least squares analysis revealed that in 42895 C > T locus, there was a significant effect on tenderness in 18-20 months Qinchuan cattle (P < 0.01), and in the 72472 G > T locus, animals with the genotype DC had lower mean values than these with genotype CC (P < 0.01) for back fat thickness in 18–20 months, and animals with the genotype DD had lower mean values than these with genotypes CC and DC (P < 0.01) for water holding capacity in 21–24 months (P < 0.01). The SNPs we have identified may contribute to establishing a more efficient selection program for improving of genetic characteristics in indigenous Chinese cattle  相似文献   

17.
To investigate the effect of substance P (SP) on human corneal epithelial cells (HCECs) that have been stressed by a high urea environment and to determine the relationship between SP and the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. An in vitro model of chronic renal failure (CRF)-related dry eye was used to study HCECs that were treated with high urea concentrations. Cell proliferation was assayed using a cell counting kit-8 test. Besides, cell apoptosis was evaluated by flow cytometry. Furthermore, the effects of SP and the AKT inhibitor perifosine on the urea-treated HCECs were examined using immunofluorescence, quantitative real time polymerase chain reaction (qRT-PCR), and Western blot analysis. SP markedly reduced the number of apoptotic HCECs and decreased the cleaved caspase-3 expression levels while contributing to increased cellular proliferation (P < 0.05). The Western blot analysis and qRT-PCR experiments revealed that SP significantly increased the expression of p-AKT and p-GSK-3β (P < 0.05); additionally, these increases were attenuated after the perifosine inhibition of the AKT signaling pathway (P < 0.05). These in vitro experiments demonstrated that SP may protect against the apoptotic damage of HCECs caused by the high urea condition. The underlying mechanism may be related to the activation of the AKT/GSK-3β signaling pathway.  相似文献   

18.
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1–3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.  相似文献   

19.
Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin‐mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin‐treated non‐small‐cell lung cancer (NSCLC) H460 cells. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and annexin‐V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose‐dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase‐3 and poly(ADP‐ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin‐induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01). Moreover, arctigenin (P < 0.05) or in combination with cisplatin (P < 0.01) induced G1/G0 cell‐cycle arrest. Our data provide evidence that arctigenin has a therapeutic potential in combina‐tion with chemotherapeutic agents for NSLC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号