首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tcp-11 is a candidate for a distorter gene within the t-complex on mouse chromosome 17; although t-complex genes appear to affect sperm function, relatively little is known about mechanisms whereby these genes might play a specific physiological role. We present evidence that the protein TCP-11 is found on the surface of mature epididymal spermatozoa. Although detected on both the acrosomal cap region of the head and the flagellum of acrosome-intact cells, it is absent from the heads of acrosome-reacted cells. When epididymal spermatozoa were incubated in the presence of anti-TCP-11 IgG Fab fragments for a total of 120 min and assessed using chlortetracycline fluorescence, we observed a stimulation of capacitation and an inhibition of spontaneous acrosome loss, suggestive of enhanced fertility compared with untreated suspensions. In vitro fertilization experiments confirmed that Fab-treated suspensions became fertile more quickly and then maintained high fertility. Because these responses were remarkably similar to those obtained using the TRH-related peptide FPP (fertilization promoting peptide; pGlu-Glu-ProNH2) and adenosine, we investigated responses to Fab fragments, FPP, and adenosine. Results indicated that the Fab fragments appear to work at the same extracellular site as FPP, one that is distinct from the adenosine site of action. Further evidence for this conclusion was obtained using pGlu-Gln-ProNH2, an FPP-related tripeptide known to competitively inhibit responses to FPP; as with FPP, pGlu-Gln-ProNH2 inhibited the stimulatory effect of Fab fragments in a concentration-dependent manner. From these results we suggest that TCP-11 may be the receptor for FPP and that the adenylate clyclase/cyclic AMP pathway may be the signal transduction pathway activated by interactions between extracellular effector molecules (e.g., Fab fragments or FPP acting as an agonist) and TCP-11. A mechanism such as this that promotes capacitation but inhibits spontaneous acrosome loss in vivo would play a very important role by helping to maximize the fertilizing potential of the few spermatozoa that reach the site of fertilization. The fact that there is a human homolog of Tcp-11 suggests that this gene could play an important role in regulation of human, as well as mouse, sperm function. Mol. Reprod. Dev. 48:375–382, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Calcitonin stimulates capacitation in uncapacitated mouse spermatozoa and then inhibits spontaneous acrosome loss in capacitated cells, responses similar to those elicited by fertilization promoting peptide (FPP), a peptide known to regulate the adenylyl cyclase/cAMP pathway. This study investigated the hypothesis that calcitonin also modulates this pathway. Calcitonin significantly stimulated cAMP production in uncapacitated spermatozoa and then inhibited it in capacitated cells; the magnitude of both stimulatory and inhibitory changes was similar to that obtained with FPP but the inhibitory responses to FPP preceded those of calcitonin. This possibly reflects the involvement of two different adenosine receptors in response to FPP compared with one calcitonin receptor. Calcitonin receptors were located on the acrosomal cap and the flagellum, the midpiece having a greater abundance than the principal piece. Although both calcitonin and adenosine receptors are found in the head and flagellum, there was no evidence for cross-talk between them. Chlortetracycline investigations to determine the minimum extracellular Ca(2+) requirement for responses to calcitonin revealed that calcitonin significantly stimulated capacitation in Ca(2+)-deficient medium but FPP did not. Calcitonin also significantly stimulated cAMP production under these conditions, and similarly preincubated suspensions, when diluted into +Ca(2+) medium, were significantly more fertile in vitro than untreated controls. These results indicate that calcitonin, like FPP, acts as a first messenger to regulate the production of cAMP and mammalian sperm function, but the differences in Ca(2+) requirements suggest that calcitonin and FPP may regulate different isoforms of adenylyl cyclase.  相似文献   

3.
Fibronectin (Fn) enhances human sperm capacitation via the cAMP/PKA pathway, and the endocannabinoid system participates in this process. Moreover, Fn has been linked to endocannabinoid system components in different cellular models, even though no evidence of such interactions in human sperm is available. Normal semen samples were evaluated over a 4‐year period. Our findings suggest that (a) the capacitating effects of Fn were reversed by preincubating the sperm with a cannabinoid receptor 1 (CB1) or transient receptor potential cation channel subfamily V member 1 (TRPV1) antagonist ( p < 0.001 and p < 0.05, respectively); (b) cooperation between CB1 and TRPV1 may exist ( p < 0.01); (c) the activity of specific fatty acid amide hydroxylase (FAAH) decreased after 1 min ( p < 0.01) and increased after 60 min ( p < 0.01) of capacitation in the presence of Fn; (d) the effects of Fn on FAAH activity were prevented by preincubating spermatozoa with a protein kinase A (PKA) inhibitor ( p < 0.01); (e) Fn modulated both the cyclic adenosine monophosphate concentration and PKA activity ( p < 0.05) during early capacitation; and (f) FAAH was a PKA substrate modulated by phosphorylation. These findings indicate that Fn stimulates human sperm capacitation via the cAMP/PKA pathway through modulation of the endocannabinoid system. Understanding the functional competence of human spermatozoa is essential for facilitating clinical advances in infertility treatment and for developing novel contraceptive strategies.  相似文献   

4.
This study was designed to localize adenosine receptors and to provide evidence that specific receptors are active only in either uncapacitated or capacitated mouse spermatozoa, where they play a role in regulating cAMP production. Using specific antibodies, stimulatory A(2A) receptors were localized primarily on the acrosomal cap region and the flagellar principal piece. Interestingly, the staining was much more pronounced in uncapacitated than in capacitated spermatozoa, suggesting capacitation-dependent changes in epitope accessibility. A(1) receptors showed a very similar distribution, but the staining was markedly greater in capacitated than in uncapacitated cells. After addition of purified decapacitation factor (DF) to capacitated cells, strong staining for A(2A) was regained, suggesting reversibility in epitope accessibility. Chlortetracycline analysis revealed that an agonist specific for A(2A) receptors had no detectable effect on capacitated cells, but after DF-induced decapacitation, the agonist then stimulated capacitation. That agonist also significantly stimulated cAMP production in uncapacitated cells, had no effect on capacitated cells, but regained the ability to stimulate cAMP in the latter following DF treatment. In contrast, an A(1) agonist inhibited cAMP in capacitated cells. These results indicate that specific adenosine receptors function in a reversible manner in one or other capacitation state, resulting in regulation of cAMP.  相似文献   

5.
Fertilization promoting peptide (FPP; pGlu-Glu-ProNH2), a tripeptide structurally related to thyrotrophin releasing hormone (TRH; pGlu-His-ProNH2), is present in the prostate gland and seminal plasma of several mammalian species. FPP has been shown not only to stimulate the capacitation and fertilizing ability of epididymal mouse and ejaculated human spermatozoa, but also to inhibit spontaneous acrosome loss in mouse spermatozoa. These results suggest a possible role in vivo for FPP to maximize the fertilizing potential of the few cells that reach the ampulla. In this study we have investigated the effects of FPP-related peptides on mouse sperm capacitation and the acrosome reaction (using chlortetracycline fluorescence) and in vitro fertilizing ability. Deamidated FPP neither stimulated capacitation when tested at 50–200 nM nor interfered with FPP's stimulation of capacitation. Three neutral peptides (pGlu-Phe-ProNH2, MeO-FPP, pGlu-Gln-ProNH2) were also evaluated. pGlu-Phe-ProNH2, slightly stimulatory when used alone, had no additive effect when used in combination with FPP and the methyl derivative of FPP had no bioactivity itself and did not inhibit responses to FPP. In marked contrast, pGlu-Gln-ProNH2 (Gln-FPP), which had no bioactivity when added to uncapacitated suspensions at 50–100 nM, significantly inhibited FPP's stimulation of capacitation and fertilizing ability in vitro. Furthermore, when Gln-FPP + FPP were added to capacitated suspensions, Gln-FPP prevented FPP's inhibition of spontaneous acrosome loss. Our recent studies have indicated that FPP and adenosine can elicit similar responses but appear to act at different sites. The fact that Gln-FPP inhibited responses to FPP, but not to adenosine, indicates that Gln-FPP is acting at an FPP-specific site. We, therefore, conclude that the specific structure of the FPP molecule is crucial for biological activity. Removal of the terminal amide group abolishes bioactivity and changes to the central amino acid can have significant functional consequences. Since Gln-FPP is a candidate intermediate peptide in the FPP biosynthetic pathway and has been identified in human semen, abnormality in prostate function could lead to release of Gln-FPP along with, or instead of, FPP. Our results suggest that the relative proportions of FPP and related peptides in seminal plasma could have a significant effect on fertility in vivo. Mol. Reprod. Dev. 48:529–535, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.  相似文献   

7.
The possible roles of adenosine and the GTP analogue Gpp(NH)p in regulating mouse sperm adenylate cyclase activity were investigated during incubation in vitro under conditions in which after 30 min the spermatozoa are essentially uncapacitated and poorly fertile, whereas after 120 min they are capacitated and highly fertile. Adenylate cyclase activity, assayed in the presence of 1 mM ATP and 2 mM Mn2+, was determined by monitoring cAMP production. When adenosine deaminase (1 U/ml) was included in the assay to deplete endogenous adenosine, enzyme activity was decreased in the 30-min suspensions but increased in the 120-min samples (P < 0.02). This suggests that endogenous adenosine has a stimulatory effect on adenylate cyclase in uncapacitated spermatozoa but is inhibitory in capacitated cells. Since the expression of adenosine effects at low nucleoside concentrations usually requires guanine nucleotides, the effect of adding adenosine in the presence of 5 x 10–5 M Gpp(NH)p was examined. While either endogenous adenosine or adenosine deaminase may have masked low concentration (10?9?10?7 M) effects of exogenous adenosine, a marked inhibition (P < 0.001) of adenylate cyclase activity in both uncapacitated and capacitated suspensions was observed with higher concentrations (>10?5 M) of adenosine. Similar inhibition was also observed in the absence of Gpp(NH)p, suggesting the presence of an inhibitory P site on the enzyme. In further experiments, the effects of Gpp(NH)p in the presence and absence of adenosine deaminase were examined. Activity in 30-min suspensions was stimulated by the guanine nucleotide and in the presence of adenosine deaminase this stimulation was marked, reversing the inhibition seen with adenosine deaminase alone. In capacitated suspensions the opposite profile was observed, with Gpp(NH)p plus adenosine deaminase being inhibitory; again, this was a reversal of the effects obtained in the presence of adenosine deaminase alone, which had stimulated enzyme activity. These results suggest the existence of a stimulatory adenosine receptor site (Ra) on mouse sperm adenylate cyclase that is expressed in uncapacitated spermatozoa and an inhibitory receptor site (Ri) that is expressed in capacitated cells, with guanine nucleotides modifying the final response to adenosine. It is concluded that adenosine and guanine nucleotides may regulate mouse sperm adenylate cyclase activity during capacitation.  相似文献   

8.
The effect of inhibiting adenosine-metabolizing enzymes on sperm fertilizing ability was studied to investigate a possible role for endogenously generated adenosine in the regulation of capacitation. The compounds used have been shown to be effective inhibitors of the relevant enzymes in similarly incubated mouse sperm suspensions. Inhibition of 5′-nucleotidase activity with α,β-methylene adenosine 5′-diphosphate (AMPCP), to reduce available endogenous adenosine, caused a dose-dependent inhibition of the fertilizing ability of partially capacitated spermatozoa, which was significant with 100 and 250 μM AMPCP. Conversely, inhibition of adenosine deaminase with 100 nM coformycin, to increase available endogenous adenosine, promoted the fertilizing ability of partially capacitated spermatozoa when the fertilization rate of control suspensions was low. However, coformycin had no effect on sperm suspensions with moderate fertilizing ability, and it inhibited fertilizing ability when added to capacitated spermatozoa. These data are consistent with a promotion of the early stages of capacitation by endogenously generated adenosine and suggest that sensitivity to adenosine changes as capacitation proceeds. Because the majority of adenosine-metabolizing enzyme activity resides in or is directed toward the extracellular compartment in such suspensions, these effects of adenosine may be mediated at the outer surface of the cell. By interacting with receptors on adenylate cyclase, externally produced adenosine could modulate intracellular levels of cyclic adenosine monophosphate (cAMP), thereby influencing fertilizing ability.  相似文献   

9.
Regulation of intracellular cAMP by multiple pathways enables differential function of this ubiquitous second messenger in a context-dependent manner. Modulation of G(s)-stimulated intracellular cAMP has long been known to be modulated by the G(i) and G(q)/Ca(2+) pathways. Recently, the G(13) pathway was also shown to facilitate cAMP responses in murine macrophage cells. We report here that this synergistic regulation of cAMP synthesis by the G(s) and G(13) pathways is mediated by a specific isoform of adenylyl cyclase, AC7. Furthermore, this signaling paradigm exists in several hematopoietic lineages and can be recapitulated by exogenous expression of AC7 in HEK 293 cells. Mechanistic characterization of this synergistic interaction indicates that it occurs downstream of receptor activation and it can be mediated by the alpha subunit of either G(12) or G(13). Our results demonstrate that AC7 is a specific downstream effector of the G(12/13) pathway.  相似文献   

10.
FPP and adenosine modulate the adenylyl cyclase (AC)/cAMP signal transduction pathway in mammalian spermatozoa to elicit a biphasic response, initially stimulating capacitation and then inhibiting spontaneous acrosome loss. This study addressed the hypothesis that responses to FPP involve interactions between receptors for FPP and adenosine, the biphasic responses involving stimulatory and inhibitory adenosine receptors. Gln‐FPP, a competitive inhibitor of FPP, significantly inhibited binding of an adenosine analogue and responses to adenosine, especially in capacitated suspensions, consistent with interaction between FPP and adenosine receptors. CGS‐21680 (1 μM), a stimulatory A2a adenosine receptor agonist, significantly stimulated capacitation and cAMP in uncapacitated cells, while cyclopentyl adenosine (1 μM), an inhibitory A1 adenosine receptor agonist only affected capacitated cells, inhibiting spontaneous acrosome loss. Responses to FPP and adenosine were inhibited in uncapacitated cells by a selective A2a antagonist and in capacitated cells by a selective A1 antagonist; subsequent investigations indicated possible involvement of G proteins. Like FPP, cholera toxin stimulated capacitation and cAMP production in uncapacitated cells, suggesting involvement of a G protein with a Gαs subunit. In contrast, pertussis toxin prevented FPP's inhibition of both spontaneous acrosome loss and cAMP production, suggesting involvement of a Gαi/o subunit. Immunoblotting evidence revealed the presence of proteins of the appropriate molecular weights for Gαs, Gαi2, i3, and Gαo subunits. This study provides the first direct evidence suggesting the involvement of two different types of adenosine receptors and both Gαs and Gαi/o subunits in the regulation of capacitation, resulting in modulation of AC activity and availability of cAMP. Mol. Reprod. Dev. 53:459–471, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
Pyroglutamylglutamylprolineamide, a prostatic tripeptide with structural similarities to thyrotrophin-releasing hormone (TRH), has been found in the seminal plasma of several mammalian species, suggestive of a biological function relating to spermatozoa. Using chlortetracycline (CTC) fluorescence analysis and in vitro fertilization, we have obtained evidence that the tripeptide stimulates mouse sperm capacitation and fertilizing ability in vitro. The tripeptide at concentrations from 5–500 nM was added to sperm suspensions and cells were assessed with CTC after 40 min, insufficient time for complete capacitation by a majority of spermatozoa under standard conditions of incubation. Concentrations of 25 nM and higher significantly promoted capacitation, as evidenced by a decrease in the proportion of acrosome-intact F pattern spermatozoa, characteristic of uncapacitated cells, and an increase in the proportion of acrosome-intact B pattern spermatozoa, characteristic of capacitated cells. However, there was no significant stimulation of acrosomal exocytosis. These results suggested that peptide-treated cells would be more fertile than their untreated counterparts. This was confirmed using in vitro fertilization, where the presence of 100 nM peptide during sperm preincubation and gamete coincubation significantly stimulated fertilizing ability (peptide, 56.5% of oocytes fertilized; controls, 26.5%). Comparison of the prostatic tripeptide and TRH effects on capacitation revealed that TRH at a concentration of 250 nM was as effective as the prostatic tripeptide in promoting the F & B transition but was less effective or ineffective at lower concentrations. In vitro fertilization assessment of the two peptides, at 100 nM, revealed that only the prostatic tripeptide significantly stimulated fertility. Again, this was consistent with the CTC analyses. Because the prostatic tripeptide can stimulate sperm function in vitro, it is possible that it plays a similar role in vivo and promotes fertilizing ability of ejaculated spermatozoa. We therefore propose that this tripeptide be referred to as fertilization promoting peptide (FPP). © 1994 Wiley-Liss, Inc.  相似文献   

12.
We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.  相似文献   

13.
Non-Small-Cell Lung Cancer (NSCLC) is considered one of the most frequently diagnosed cancers and the leading cause of cancer-related deaths worldwide. Despite the undoubted therapeutic advances that have occurred in clinical practice over time, due to its high degree in both heterogeneity and resistance, NSCLC remains largely incurable. As a natural cAMP elevating agent, Forskolin has shown anti-cancer properties in different tumor types, thus supposing its possible usage in treating malignancies. In this study, we investigated the Forskolin outcome in H1299 and A549 NSCLC cell lines, either alone or in combination with Paclitaxel. We proved that Forskolin impairs cell growth and migration ability of these cells, concurrently. Albeit with a different extent between H1299 and A549, changes in cell-cycle progression and epithelial-mesenchymal markers were observed in response to Forskolin administration. Interestingly, comparable cell growth impairment was also obtained with the cAMP phosphodiesterase inhibitor IBMX, while the employment of adenylyl cyclase inhibitor SQ22536 counteracted, at least in part, the Forskolin-mediated anticancer effects. Besides as a single agent, we also demonstrated that Forskolin strongly enhances Paclitaxel-induced cytotoxicity, affecting cell death mainly via apoptosis induction. Notably, H89-mediated protein kinase A (PKA) inhibition further deteriorated the combination outcome. Altogether, our data designate Forskolin as a possible anticancer molecule in NSCLC, and recognize the adenylyl cyclase/cAMP axis as one of the pathways involved in. Although achieved at preclinical stage, our findings encourage the design of future studies aimed at further exploring the Forskolin employment in NSCLC treatment.  相似文献   

14.
Glucose metabolism is necessary for successful fertilization in the mouse. Both spermatozoa and oocytes metabolize glucose through the pentose phosphate pathway (PPP), and NADPH appears required for gamete fusion. The aims of this study were to further characterize the utilization of glucose by the fertilizing spermatozoon and the fertilized oocyte, to demonstrate the importance of the PPP in different steps of fertilization, and to examine whether the beneficial effect of glucose could be mediated by a NADPH-dependent enzyme involved in redox regulation. By using a fluorescent analog of 2-deoxyglucose, glucose uptake was evidenced in both the head and flagellum of motile spermatozoa. After sperm-oocyte fusion, an increase in glucose uptake by the fertilized oocyte was observed but not before the formation of the male and female pronuclei. By using a microphotometric technique, activity of glucose 6-phosphate dehydrogenase (G6PDH), the key enzyme of the PPP, was localized to the sperm head and midpiece. When epididymal spermatozoa were released into a glucose-containing medium, the NADPH/NADP ratio increased with capacitation. Sperm-oocyte fusion and meiosis reinitiation of the fertilized oocyte was inhibited by the PPP inhibitor 6-aminonicotinamide (6-AN); inhibition of sperm-oocyte fusion was relieved by NADPH. Sperm-oocyte fusion and meiosis reinitiation were also inhibited by diphenylamine iodonium, which is a flavoenzyme inhibitor reported to prevent reactive oxygen species (ROS) generation in mouse spermatozoa and embryos. These findings indicate that the PPP is involved in different steps of fertilization. Subsequent regulation of a NADPH-dependent flavoenzyme responsible of ROS production is envisaged.  相似文献   

15.
Pregnant Wistar rats were orally treated with 1 g/L l -glutamate during the entire gestational period and the status of adenosine A1 receptor (A1R)/adenylyl cyclase transduction pathway from maternal and fetal brain was analyzed. Glutamate consumption, estimated from the loss of water from the drinking bottles, was 110 ± 4.6 mg/kg/day. In mother brains glutamate intake did not significantly alter the B max value, although the K d value was significantly decreased. However in fetus brain, a significant decrease in B max was observed, without an alteration of K d value. Similar results were observed by western blot assays using specific A1R antibody, suggesting a down-regulation of A1R in fetal brain. Concerning α subunits of inhibitory G proteins (Gi), αGi3 protein was slightly but significantly decreased in maternal brain without alterations of either Gi1 or Gi2. In contrast, αGi1 and αGi2 isoforms were increased in fetal brain. On the other hand, basal, forskolin, and forskolin plus GTPγS-stimulated adenylyl cyclase activity was significantly decreased in both maternal and fetal brain, and this was more prominent in fetal than in maternal brain. Finally, A1R functionality was significantly decreased in mother brain whereas no significant differences were detected in fetus brain. These results suggest that glutamate administered to pregnant rats modulates A1R signaling pathways in both tissues, showing an A1R down-regulation in fetal brain, and desensitization in maternal brain.  相似文献   

16.
We previously demonstrated that prostaglandin EP3 receptor augments EP2-elicited cAMP formation in COS-7 cells in a Gi/o-insensitive manner. The purpose of our current study was to identify the signaling pathways involved in EP3-induced augmentation of receptor-stimulated cAMP formation. The enhancing effect of EP3 receptor was irrespective of the C-terminal structure of the EP3 isoform. This EP3 action was abolished by treatment with inhibitors for phospholipase C and intracellular Ca2+-related signaling molecules such as U73122, staurosporine, 2-APB and SK&F 96365. Indeed, an EP3 agonist stimulated IP3 formation and intracellular Ca2+ mobilization, which was blocked by U73122, but not by pertussis toxin. The enhancing effect by EP3 on cAMP formation was mimicked by both a Ca2+ ionophore and the activation of a typical Gq-coupled receptor. Moreover, EP3 was exclusively localized to the raft fraction in COS-7 cells and EP3-elicited augmentation of cAMP formation was abolished by cholesterol depletion and introduction of a dominant negative caveolin-1 mutant. These results suggest that EP3 elicits adenylyl cyclase superactivation via Gq/phospholipase C activation and intracellular Ca2+ mobilization in a lipid raft microdomain-dependent manner.  相似文献   

17.
In order to elucidate how phosphate regulates cellular functions, we investigated the effects of inorganic phosphate (Pi) on adenylate cyclase (AC)/cyclic AMP (cAMP) axis. Here we describe that Pi treatment of human osteosarcoma U2OS cells results in a decrease of both intracellular cAMP levels and AC activity, and in a cell growth inhibition. The phosphate-triggered effects observed in U2OS cells are not a widespread phenomenon regarding all cell lines, since other cell lines screened respond differently to parallel Pi treatments. In U2OS cell line, the AC activity/cAMP downregulation is accompanied by significant variations in the levels of some membrane proteins belonging to the AC system. Remarkably, the above effects are blunted by pharmacological inhibition of sodium-dependent phosphate transport. Moreover, 8-Br-cAMP and other cAMP-elevating agents, such as IBMX and forskolin, interestingly, prevent the cell growth inhibition in response to phosphate. Our results enforce the increasing evidences of phosphate as a signaling molecule, identifying in U2OS cell line the AC/cAMP axis, as a novel-signaling pathway modulated by phosphate to ultimately affect cell growth.  相似文献   

18.
Summary

Littorinid parasperm develop from a distinctive lineage of germ cells which exhibit a process of nuclear destruction that has apototic characteristics. Fragments of DNA and other nuclear breakdown products are incorporated into secretion granules in parasperm that ultimately find their way to the female bursa copulatrix. Spermatozeugmata are stored in the seminal vesicles and, if unused during the breeding season, they are recycled by phagocytosis. Attachment between eusperm and parasperm is facilitated by an electrostatic interaction of proteins. Detachment, caused by alkaline prostate fluid, occurs by the time the ejaculate reaches the tip of the penis. Thus transport of eusperm by parasperm to the female is unlikely. parasperm are sterile cells that may function in defense against rival eusperm as suggested by the presence of lysosomes, or they may act as nuptial gifts as they are packed with glycoprotein nutrients. Differences in the reactivity of different parasperm to specific lectins may enable separation of dimorphic sperm by lectin affinity chromatography, thereby facilitating future studies on individual parasperm. In female Littorinidae, sperm are stored incapacitated in storage organs, or rarely in the ovary itself. In L. littorea serotonin caused spawning of unencapsulated eggs, which, in the presence of activated sperm, became polyspermic.  相似文献   

19.
目的:观测缺血/再灌注小鼠海马组织环磷酸腺苷(cAMP)和腺苷环化酶(AC)mRNA水平,探讨缺血/再灌注发病的分子生物学机制.方法:通过双侧颈总动脉线结、连续3次缺血-再灌注,制作缺血/再灌注动物模型,并设立假手术组;术后29 d、30 d分别测试学习和记忆成绩;应用放射免疫法检测小鼠海马组织cAMP水平,应用原位杂交技术检测ACmRNA水平.结果:与假手术组比较,模型组学习和记忆成绩均降低(P<0.05),且海马组织cAMP水平也降低(P<0.05),海马CA1区AC mRNA阳性神经元面密度明显降低(P<0.05).结论:海马组织cAMP和AC mRNA水平降低可能参与了缺血/再灌注后学习和记忆障碍的分子生物学发病机制.  相似文献   

20.
Movement characteristics of golden hamster spermatozoa were studied upon collection from the cauda epididymis, during an incubation which capacitates the spermatozoa in vitro, during penetration of the cumulus, and during attachment to and penetration of the zona pellucida. High-speed videomicrography was employed to quantitate flagellar beat frequency and shape. The status of the acrosome was also assessed. During capacitation, hamster spermatozoa become increasingly invigorated before the onset of hyperactivated motility. Within the cumulus, beat frequency and curvature are reduced, apparently in response to the physical resistive properties of the matrix material. These properties appear to vary within the cumulus. Initial attachment to the zona precedes completion of the acrosome reaction, is non-rigid, and is accompanied by increased beat frequency and curvature. Subsequently, the onset of rigid binding to the zona, completion of the acrosome reaction, and increased flagellar beat frequency are very closely associated in time. The latter produces an increase in thrust against the zona. Preliminary results indicate that ensuing zona penetration requires not more than five minutes, is at oblique angles, and is associated with a continuation of vigorous flagellar beating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号