共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Joyce E. Rundhaug Thomas Gray Ronald W. Steigerwalt Paul Nettesheim 《Journal of cellular physiology》1992,152(2):281-291
Primary rat tracheal epithelial (RTE) cell cultures have previously been shown to be highly sensitive to growth inhibition by transforming growth factor-β1 (TGF-β1) when treated within 1–2 days after plating. The purpose of the present studies was to examine the effects of TGFβ1 on the growth of RTE cells as a function of time in culture. We found that the sensitivity of RTE cells to growth inhibition by TGFβ1 decreased dramatically as the cultures aged. The IC50 for inhibition of colony forming efficiency was 0.18 pM when TGFβ1 was added 24 h after cell plating. When TGFβ1 treatment was begun on day 5 of culture, the IC50 was 3–4 pM as measured by inhibition of growth (cell number) and DNA synthesis. However, when TGFβ1 was begun on day 19, the IC50 was 65 pM or > 500 pM, depending on whether inhibition of growth or DNA synthesis, respectively, was measured. TGFβ1 accelerated cell death, as measured by exfoliation of cells, and inhibited cell proliferation. The decrease in responsiveness to TGFβ1 in late cultures was shown to be dependent on culture age as well as on cell density. No evidence was found for inactivation or degradation of the added TGFβ1 by the late stage cultures. Cells subcultured from late stage primary cultures remained less responsive to TGFβ1 than subcultured cells from early cultures. Similar to its effect on proliferation, TGFβ1 down-regulated the expression of two proliferation-related genes, c-myc and transforming growth factor-α, in early but not late RTE cell cultures. On the other hand, fibronectin expression was increased by TGFβ1 by about twofold at both early and late times in culture. This indicates that the changes in TGFβ1 responsiveness with time in culture are selective, apparently affecting primarily proliferation-related events. © 1992 Wiley-Liss, Inc. 相似文献
3.
Retinoic acid (RA) induces the activation of latent transforming growth factor-β (TGF-β) in bovine aortic endothelial cells (BAECs) via enhancement of cellular plasminogen activator (PA)/plasmin levels. The resultant TGF-β suppresses the excessive fibrinolytic activity by decreasing PA expression and stimulating expression of the PA inhibitor, PA inhibitor-1 (PAI-1), and inhibits cell proliferation. Here, we report that, in this regulatory system, RA simultaneously up-regulates the expression of TGF-β receptor types I and II, resulting in enhancement of TGF-β activity in the cells. RA increased the numbers of high- and low-affinity binding sites for 125I-TGF-β1 2.1-fold and 1.5-fold, respectively, without alteration of their Kd values. Affinity labeling and Western and Northern blotting studies showed that, following RA treatment, surface levels of both type I and type II receptors increased due to augmentation in their mRNA levels. The effect was dose- and time-dependent. Treatment with 1 μM RA for 15 hr increased mRNA levels of type I and II receptor threefold and eightfold, respectively. Pretreatment of BAECs with either RA or retinol lowered the concentration of TGF-β1 required to suppress PA levels, to enhance PAI-1 levels, and to inhibit cell proliferation. Thus, retinoids may regulate cellular functions of BAECs not only by inducing the formation of active TGF-β but also by stimulating TGF-β receptor expression. This regulatory mechanism may sustain TGF-β-mediated regulation of EC function at a focal site where RA is acting. J. Cell. Physiol. 176:565–573, 1998. © 1998 Wiley-Liss, Inc. 相似文献
4.
Proteome profile changes during transdifferentiation of NRP-152 rat prostatic basal epithelial cells
NRP-152 is an androgen responsive, non-tumorigenic cell line, which shows basal epithelial cell characteristics under normal growth conditions. It has been noted that NRP-152 undergoes morphological and cytoskeletal changes toward its luminal counterpart NRP-154 when it is grown under growth restrictive conditions. We have extensively investigated the details of protein change of NRP-152 during transdifferentiation using proteomic techniques. NRP-152 cells were cultured under normal and growth restrictive media conditions for 3, 5 days. NRP-154 cells were normally cultured. Protein samples were submitted to 2D gel electrophoresis and silver stained. Protein patterns on the gels were comparatively analysed using Melanie III software. Protein spots exhibiting significant changes in NRP-152 cells during the time course were excised and subjected to in-gel tryptic digestion. After 6 days of growth restrictive conditions in NRP-152, the cells were morphologically changed resembling luminal phenotype. Of the 35 protein spots that were up-reglated, 20 proteins from 21 spots were identified by peptide mass fingerprinting and, of 21 proteins spots that were down-regulated, 10 proteins from 12 spots were identified as landmark proteins. Our study confirmed that basal NRP-152 cells were proportionally transdifferentiated into luminal featuring cells according to the duration of growth restrictive culture conditions. This suggests that human prostatic basal epithelial cells may be changed into luminal cells under certain conditions. Proteomic approach enabled us to identify 30 proteins involved in this differentiation with a single experiment. These proteins will be subjected to further functional studies to evaluate their possible roles related to cellular differentiation. These data strongly support that proteomics is a very powerful approach for studying physiologic and pathologic cellular changes such as differentiation and carcinogenesis. 相似文献
5.
6.
R. Krishnan Kutty Chandrasekharam N. Nagineni Geetha Kutty John J. Hooks Gerald J. Chader Barbara Wiggert 《Journal of cellular physiology》1994,159(2):371-378
Antibodies specific for heme oxygenase-1 (HO-1) were produced in rabbits, using the multiple antigen peptide (MAP) technique, and were employed to investigate the ability of transforming growth factor-β1 (TGF-β1) to induce the HO-1 protein in cultured human retinal pigment epithelial (RPE) cells. Western blot analyses showed that the cytokine induced HO-1 in these cells in a time- and dose-dependent manner. TGF-β1 also increased the mRNA for HO-1 in treated cells prior to the increase in HO-1 protein. The induction was effectively blocked by a neutralizing antibody preparation against TGF-β1. When tested under similar conditions, other growth factors such as basic fibroblast growth factor-I, plateletderived growth factor, insulin-like growth factor, transforming growth factor-α, and epidermal growth factor did not show appreciable induction of HO-1. Lipopolysaccharide, tumor necrosis factor-α, and interferon-γ were also not inducers, although TGF-β2 effectively induced HO-1. Heavy metal ions and thiol reagents were also highly potent inducers of HO-1 in human RPE cells. The induction of HO-1 by TGF-β1 was also observed in bovine choroid fibroblasts, but not in HELA, HEL or bovine corneal fibroblasts. Our results demonstrate for the first time that HO-1 can be induced by an important cytokine, TGF-β1, causing an increase in the expression of both HO-1 message and protein in specific neuroepithelial and fibroblast cells. © 1994 wiley-Liss, Inc. 1 This article is a US Government work and, as such, is in the public domain in the United States of America. 相似文献
7.
Primary rat tracheal epithelial (RTE) cell cultures have previously been shown to secrete transforming growth factor-β (TGFβ) and to be growth inhibited by exogenous TGFβ. The purpose of the present studies was to determine whether the endogenous TGFβ(s) were regulating the growth of RTE cell cultures and, if so, which isoforms were involved. Neutralizing antibodies specific to TGFβ1 and TGFβ2 were added to cultures, and their effects on several growth parameters were measured. Addition of antibodies to early cultures (day 1), resulted in 1.8-and 3-fold increases in colony formation and cell number, respectively, above control IgG-treated cultures. Antibody dose-response experiments revealed that TGFβ2 was the predominant isoform inhibiting early RTE cell growth. The antibody treatments resulted in similar stimulation of early growth at low and high seeding densities, suggesting that the endogenous TGFβs were acting locally. Anti-TGFβ1 treatment of cultures at various stages of growth resulted in 1.2–1.7-fold increases in DNA synthesis above controls, whereas anti-TGFβ2 treatment resulted in increased DNA synthesis only in early and late cultures (1.7- and 2.5-fold, respectively), but not during midlogarithmic growth. Continuous treatment with a combination of both antibodies resulted in increased growth and decreased exfoliation in early cultures, but had no effect on the slow down of growth in late cultures. Thus endogenous TGFβs inhibited primarily early growth and contributed to, but did not appear to be responsible for, plateau of growth in late stage cultures. Antibody treatment of secondary cultures resulted in 4–70-fold increases in colony formation, depending on the age of the primary cultures when replated, indicating that endogenous production of both TGFβ1 and TGFβ2 greatly inhibits the subculturability of primary RTE cells. Other experiments suggested that cholera toxin enhances RTE cell growth in part by counteracting the inhibitory effects of endogenous TGFβs. © 1993 Wiley-Liss, Inc. 相似文献
8.
Jennifer H. Dorrington James J. Bendell Shafiq A. Khan 《The Journal of steroid biochemistry and molecular biology》1993,44(4-6):441-447
Estradiol-17β (E2) is a mitogen in vivo for the proliferation of granulosa cells in the rat ovary. E2 is synthesized by the preovulatory follicle through a series of gonadotrophin-dependent events: LH stimulates thecal cells to synthesize androgens (androstenedione and testosterone) which are substrates for FSH-induced aromatization to estrogens in granulosa cells. More recently, we have found that transforming growth factor-β (TGF-β) stimulates DNA synthesis in rat granulosa cells in vitro and this effect is augmented by FSH. Since E2 is a mitogen in vivo and TGF-β is the only known growth factor to stimulate proliferation in vitro, the possible link between the actions of E2 and TGF-β were examined. E2 stimulated the secretion of a TGF-β-like factor by rat granulosa cells in culture, and with time DNA synthesis was stimulated. The mitogenic action of E2 was enhanced in the presence of FSH, and attenuated by a neutralizing antibody to TGF-β. The latter observations have identified TGF-β as the “missing-link” in the mitogenic actions of E2 on rat granulosa cells. In addition to the growth-promoting actions of TGF-β plus FSH, TGF-β enhanced FSH-induced aromatase activity. Consequently, FSH plus TGF-β stimulates both the proliferation and aromatization capacity of rat granulosa cells. We propose that interactions between FSH, E2 and TGF-β lead to the exponential increase in serum E2 levels that occurs during the follicular phase of the cycle. Similarly, FSH stimulates the aromatization of exogenous androgens to estrogen by Sertoli cells isolated from immature rat testes, and there is a correlation between FSH-induced aromatization and mitotic activity. We have shown that FSH plus TGF-β stimulates DNA synthesis in Sertoli cells. Since E2 increases the secretion of TGF-β by Sertoli cells, interactions between FSH, E2 and TGF-β may provide the mitogenic stimulus for Sertoli cells during the prepubertal period. In summary, our findings suggest that the estrogen-induced growth of rat granulosa cells is mediated through the production of TGF-β, which acts as an autocrine regulator of proliferation. We also propose that the growth-promoting actions of FSH on Sertoli cells may depend upon a cascade series of events involving estrogens and TGF-β. 相似文献
9.
Michael P. Fautsch Scott T. Eblen Robert A. Anders Rebekah J. Burnette Edward B. Leof 《Journal of cellular biochemistry》1995,58(4):517-526
Cyclin-dependent kinases (cdks) are a family of proteins whose function plays a critical role in cell cycle traverse. Transforming growth factor-β1 (TGF-β1) is a potent growth inhibitor of epithelial cells. Since cdks have been suggested as possible biochemical markers for TGF-β growth inhibition, we investigated the effect of TGF-β1 on cdc2 and cdk2 in a normal mouse mammary epithelial cell line (MME) and a TGF-β-resistant MME cell line (BG18.2). TGF-β1 decreases newly synthesized cdc2 protein levels within 6 h after addition. Coincident with this decrease in newly synthesized cdc2 protein was a marked reduction in its ability to phosphorylate histone H1. This decrease in kinase activity is not due to a change in steady-state levels of cdc2 protein, since mRNA and total protein levels of cdc2 are not reduced until 12 h after TGF-β1 addition. This suggests that the kinase activity of cdc2 is dependent on newly synthesized cdc2 protien. Moreover, the protein synthesis of another cyclin-dependent kinase, cdk2, is not effected by TGF-β1 addition, but its kinase activity is substantially reduced. Thus, it appears that TGF-β decreases the kinase activity of both cdc2 and cdk2 by distinct mechanisms. 相似文献
10.
Soichi Kojima Robert Vernooy David Moscatelli Hiroshi Amanuma Daniel B. Rifkin 《Journal of cellular physiology》1995,163(1):210-219
The activation of latent transforming growth factor-β (TGF-β) by vascular endothelial cells (ECs) is regulated by cellular plasminogen activator (PA)/plasmin, transglutaminase (TGase), and latent TGF-β levels. Because lipopolysaccharide (LPS) has been reported to reduce EC surface plasmin levels by increasing the production of the inhibitor of PA, PA inhibitor-1 (PAI-1), we have tested whether LPS might suppress latent TGF-β activation in ECs using two different systems, namely, bovine aortic ECs (BAECs) cocultured with smooth muscle cells (SMCs) and BAECs treated with retinol. BAECs were either cocultured with SMCs after treatment with 15 ng/ml LPS or were treated with 2 μM retinol and/or 10 ng/ml LPS, and the expression of PA, surface plasmin, TGase, and the amounts of active and latent TGF-β secreted into the culture modium were measured. The downregulation of surface PA/plasmin levels with LPS was accompanied by a profound decline of both TGase and latent TGF-β expression as well as the suppression of surface activation of latent TGF-β. The effect was dependent on the concentration of LPS and on treatment time. The formation of TGF-β did not occur in cells maintained in LPS-contaminated culture medium. © 1995 Wiley-Liss, Inc. 相似文献
11.
Ester Piek Petra Franzn Carl-Henrik Heldin Peter Ten Dijke 《Journal of cellular physiology》1997,173(3):447-459
We have characterized a 60-kDa transforming growth factor-β (TGF-β) binding protein that was originally identified on LNCaP adenocarcinoma prostate cells by affinity cross-linking of cell surface proteins by using 125I-TGF-β1. Binding of 125I-TGF-β1 to the 60-kDa protein was competed by an excess of unlabeled TGF-β1 but not by TGF-β2, TGF-β3, activin, or osteogenic protein-1 (OP-1), also termed bone morphogenetic protein-7 (BMP-7). In addition, no binding of 125I-TGF-β2 and 125I-TGF-β3 to the 60-kDa binding protein on LNCaP cells could be demonstrated by using affinity labeling techniques. The 60-kDa TGF-β binding protein showed no immunoreactivity with antibodies against the known type I and type II receptors for members of the TGF-β superfamily. Treatment of LNCaP cells with 0.25 M NaCl, 1 μg/ml heparin, or 10% glycerol caused a release of the 60-kDa protein from the cell surface. In addition, we found that the previously described TGF-β type IV receptor on GH3 cells, which does not form a heteromeric complex with TGF-β receptors, could be released from the cell surface by these same treatments. This suggests that the 60-kDa protein and the similarly sized TGF-β type IV receptor are related proteins. The eluted 60-kDa LNCaP protein was shown to interfere with the binding of TGF-β to the TGF-β receptors. Thus, the cell surface-associated 60-kDa TGF-β binding protein may play a role in regulating TGF-β binding to TGF-β receptors. J. Cell. Physiol. 173:447–459, 1997. © 1997 Wiley-Liss, Inc. 相似文献
12.
Expression patterns of TGF-βs during embryogenesis and in adult reproductive organs, as well as the activities of these molecules in in vitro assays of biological processes relating to reproduction and development, have suggested that TGF-βs may play a role in both reproductive function and embryonic development. To investigate the function of TGF-β1 in vivo, the murine TGF-β1 gene was disrupted by gene targeting, and animals that lacked TGF-β1 activity were generated. Homozygous mutant animals were obtained which exhibited a multifocal inflammatory disease. However, the observed numbers of homozygous mutant offspring were less than expected, suggesting the occurrence of some type of prenatal lethality. This paper reviews the proposed role of the TGF-βs in reproductive and developmental processes and discusses observations obtained from the TGF-β1 gene-targeting experiments as they relate to these processes. © 1994 Wiley-Liss, Inc. 相似文献
13.
Cell-associated plasmin is a putative physiological activator of latent transforming growth factor-β (LTGF-β). Since retinoids enhance the production of plasminogen activator (PA) and thereby increase cell-associated plasmin activity, we tested the possibility that retinoids might induce the activation of LTGF-β using bovine endothelial cells (ECs) as a model system. ECs treated with physiological concentrations of retinol or retinoic acid formed active TGF-β in the culture media in a dose- and time-dependent fashion. Cells were treated with 2 μM retinol for 24 h, and the amount of TGF-β produced during a subsequent 12-h incubation period was measured. Out of a total of 14 pM LTGF-β secreted, 0.7 pM was converted to active TGF-β. Northern blot analyses showed that mRNA levels for TGF-β2 but not for TGF-β1 increased in cells treated with retinol. Inclusion of either inhibitors of PA or of plasmin or antibody against PA in the culture medium as well as depletion of plasminogen from the serum blocked the formation of TGF-β, suggesting that PA, plasminogen, and the resulting plasmin are essential for activation of LTGF-β in retinoid-stimulated cells. Antibody against the LTGF-β binding protein blocked activation implying that localization of LTGF-β through its binding protein may be important. However, inhibition of binding of LTGF-β to the cell surface mannose 6-phosphate receptor did not prevent activation. These data indicate that retinoids up-regulate the production of LTGF-β in ECs and induce activation of LTGF-β, perhaps, by increasing PA and plasmin levels. Thus, TGF-β might be a local mediator of some of the biological activities of retinoids both in vivo and in vitro. © 1993 Wiley-Liss, Inc. 相似文献
14.
15.
Transforming growth factor-β (TGF-β) is normally secreted in a latent form, and plasmin-mediated proteolytic cleavage of latency-associated peptide (LAP), a component of latent TGF-β complex that makes the complex inactive, activates latent TGF-β. In the present study, we investigated the possible involvement of calpain, one of the cysteine proteases, in the activation of latent TGF-β. When recombinant latent TGF-β was incubated with calpain (1–10 u/ml) in a test tube, calpain cleaved LAP and released mature TGF-β from the latent complex. When calpain was applied to cultured bovine capillary endothelial (BCE) cells, a low concentration of calpain (0.05–0.1 u/ml) inhibited the migration and proliferation of the cells, and these inhibitory effects were abrogated by anti-TGF-β antibody as well as by calpain inhibitor peptide, but not by α2-antiplasmin, a specific inhibitor of plasmin. Active TGF-β was detected in the conditioned medium of BCE cells collected in the presence of calpain. Chemical cross-linking of 125I-calpain to BCE cells followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that calpain bound to the cell surface through chondroitinase ABC-sensitive proteoglycan. In addition, treatment of the BCE cells with chondroitinase ABC abrogated the inhibitory effect of calpain on the migration of these cells. Our data thus suggest that calpain is able to activate latent TGF-β through a mechanism independent of plasmin. This activation is efficient in the presence of cells, and calpain binds to the cell surface via proteoglycan and activates latent TGF-β, which is targeted to the same surface. J. Cell. Physiol. 174:186–193, 1998. © 1998 Wiley-Liss, Inc. 相似文献
16.
Kazuko Wada Shintaro Nomura Eiichi Morii Yukihiko Kitamura Yasuko Nishizawa Akira Miyake Nobuyuki Terada 《The Journal of steroid biochemistry and molecular biology》1996,59(5-6):367-375
To examine the roles played by transforming growth factors (TGF)-β1, -β2, -β3, and TGF-β type II receptors in the induction of apoptosis in the mouse uterine epithelium after estrogen deprivation, we investigated the expression of their mRNAs and the mRNA of sulfated glycoprotein-2 (SGP-2). Pellets containing 100 μg estradiol-17β (E2) were implanted into ovariectomized mice and removed four days later. Apoptotic indices (percentage of apoptotic cells) of both luminal and glandular epithelia increased after E2 pellets were removed, but administration of progesterone (P), 5-dihydrotestosterone (DHT), or continued implantation of E2 pellets suppressed this increase. Levels of mRNAs of TGF-β1, -β2, and -β3, and SGP-2 did not increase after estrogen deprivation. However, estrogen deprivation caused a gradual increase in the level of TGF-β type II receptor mRNA, and its level increased about six-fold six days later. Moreover, E2, P, and DHT markedly decreased the level of TGF-β type II receptor mRNA. In situ hybridization demonstrated that mRNAs of TGF-β1, -β2, -β3 and TGF-β type II receptor were localized to the epithelium. Exogenous administration of TGF-β1 into the uterine stroma induced apoptosis in the epithelium, a finding that suggests that signals produced by TGF-βs can induce apoptosis. Therefore, the present results suggest that increased sensitivity of uterine epithelial cells to TGF-βs, as demonstrated by an increase in TGF-β type II receptor mRNA, is involved in the induction of apoptosis after estrogen deprivation, although signals produced by TGF-βs do not appear sufficient to induce apoptosis. 相似文献
17.
18.
Hyonkyong Chong Yoram Vodovotz George W. Cox M.H. Barcellos-Hoff 《Journal of cellular physiology》1999,178(3):275-283
Transforming growth factor-β1 (TGF-β) is secreted in a latent form consisting of mature TGF-β noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-β from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-β action. We have identified two events associated with latent TGF-β (LTGF-β) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-β concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-γ and lipopolysaccharide reportedly activate LTGF-β via cell membrane–bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-β activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-β epitopes. The induction of TGF-β immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-β activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-β and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-β activation provides an important tool for studies of its regulation. J. Cell. Physiol. 178:275–283, 1999. © 1999 Wiley-Liss, Inc. 相似文献
19.
20.
Transforming growth factor-β1 (TGF-β1) plays important roles in pathologic processes. To further investigate the actions of this cytokine in sheep, the entire 1170-bp ovine TGF-βl pro-protein-encoding sequence has been determined by the cloning and sequencing of specific polymerase-chain-reaction amplification products of TGF-β1 cDN A sequences. In addition, these sequences have been used to estimate the length of the TGF-β1 mRNA as 1.5-1.7 kb by Northern blot hybridization and determine that the ovine TGF-β1 gene occupies a single locus in the sheep genome by chromosomal in situ hybridization. 相似文献