首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian ciliary ganglion neurons in cell culture were examined for the capacity to synthesize acetylcholine (ACh) from the exogenously supplied precursor, choline. Relevant kinetic parameters of the ACh synthetic system in cultured neurons were found to be virtually the same as those of the ganglionic terminals in the intact iris. Neurons were cultured in the presence of and allowed to innervate pectoral muscle; this results in an capacity for ACh synthesis. In particular, the ability to increase ACh synthesis upon demand after stimulation is affected by interaction with the target. This effect is shown to be an acceleration of the maturation of the cultured neurons. Lysed and washed membrane remnants of the muscle target were able to duplicate, in part, this effect of live target tissue on neuronal transmitter metabolism. Culture medium conditioned by muscle, and by the membrane remnants of muscle, was without significant effect. Thus, substances secreted into the medium do not play a major role in this interaction. Neurons cultured with either muscle or muscle membrane remnants formed large, elongate structures on the target membrane surface. These were not seen in the absence of the target at the times examined. This morphological difference in terminal-like structures may parallel the developmental increases in size and vesicular content of ciliary ganglion nerve terminals in the chick iris, and may relate to the increased ACh synthetic activity. The results suggest that direct contact with an appropriate target membrane has a profound, retrograde influence upon neuronal metabolic and morphological maturation.  相似文献   

2.
In the two segments of the medicinal leech (Hirudo medicinalis) that contain the male (segment 5) and the female (segment 6) reproductive ducts, the paired Retzius (Rz) neurons are distinguished by several unique properties. For example, the muscles and glands of the body wall are the primary peripheral targets of Rz neurons in standard segments [Rz(X)], whereas the muscles and glands of the reproductive ducts are the primary peripheral targets of Rz neurons in the two reproductive segments [Rz(5,6)]. In this paper, we show that organogenesis and differentiation, which generate an epithelial tube surrounded by mesenchymal cells, occur in the embryonic reproductive ducts at approximately the time when Rz processes first contact these structures. The growth cones leading one branch of the posterior axon of Rz(5,6) contact the duct mesenchymal cells. Following initiation of this contact, these posterior growth cones enlarge and send out numerous filopodia. Secondarily, growth cones leading the anterior axon of each Rz(5,6) also modify their shapes and trajectories. When embryonic reproductive ducts were transplanted into posterior (nonreproductive) segments, the branch of the posterior Rz axon near the ectopic reproductive tissue produced enlarged growth cones and extended several secondary branches into the mesenchyme of the ectopic tissue. This result suggests that the reproductive mesenchyme is attractive to, and can modify the growth of, all Rz neurons. The behavior of Rz(5,6) growth cones suggests that the reproductive mesenchyme cells provide guidance cues that control the location in which Rz axons elaborate their peripheral arborization and form synapses, and that the mesenchyme may also stimulate the production of a densely branched arbor.  相似文献   

3.
P G Haydon  M J Zoran 《Neuron》1989,2(5):1483-1490
The ability to release acetylcholine (ACh) from cultured neurons of Helisoma was assessed by micromanipulating ACh-sensitive somata into contact with presynaptic neurons. ACh release was reliably detected from neurites and growth cones of cholinergic neuron B5, but not neuron B19, as early as 3 s after contact with novel target neurons. The rapid onset of transmission correlates with the ability of neuron B5, but not neuron B19, to indiscriminately form chemical connections and may be related to the specificity of synaptogenesis. The neuropeptide FMRFamide reduces ACh release at early chemical connections. The rapid onset of functional transmission and the ability of FMRFamide to modulate chemical transmission at this early chemical connection suggest that neuron B5 acquires its presynaptic apparatus through an intrinsic program independently of target contact.  相似文献   

4.
Postmitotic sympathetic neuronal survival is dependent upon nerve growth factor (NGF) provided by peripheral targets, and this dependency serves as a central tenet of the neurotrophic hypothesis. In some other systems, NGF has been shown to play an autocrine role, although the pervasiveness and significance of this phenomenon within the nervous system remain unclear. We show here that rat sympathetic neurons synthesize and secrete NGF. NGF mRNA is expressed in nearly half of superior cervical ganglion sympathetic neurons at embryonic day 17, rising to over 90% in the early postnatal period, and declining in the adult. Neuronal immunoreactivity is reduced when retrograde transport is interrupted by axotomy, but persists in a subpopulation of neurons despite diminished mRNA expression, suggesting that intrinsic protein synthesis occurs. Cultured neonatal neurons express NGF mRNA, which is maintained even when they are undergoing apoptosis. To determine which NGF isoforms are secreted, we performed metabolic labeling and immunoprecipitation of NGF‐immunoreactive proteins synthesized by cultured NGF‐dependent and ‐independent neurons. Conditioned medium contained high molecular weight NGF precursor proteins, which varied depending upon the state of NGF dependence. Mature NGF was undetectable by these methods. High molecular weight NGF isoforms were also detected in ganglion homogenates, and persisted at diminished levels following axotomy. We conclude that sympathetic neurons express NGF mRNA, and synthesize and secrete pro‐NGF protein. These findings suggest that a potential NGF‐sympathetic neuron autocrine loop may exist in this prototypic target‐dependent system, but that the secreted forms of this neurotrophin apparently do not support neuronal survival. © 2003 Wiley Periodicals, Inc. J Neurobiol 38–53, 2003  相似文献   

5.
6.
Selective fasciculation of growth cones along preestablished axon pathways expressing matching or complementary adhesion molecules is thought to be an important strategy in axon guidance. Growth cone inhibiting factors also appear to influence pathfinding decisions. We have used identified Aplysia neurons in vitro to explore the hypothesis that similar mechanisms could be involved in target selection. Co-cultures of L10 neurons with RB neuron targets or R2 neurons with RUQ neuron targets reliably formed chemical connections. In contrast, co-cultures of L10 with RUQ targets usually failed to form detectable chemical connections unless cell–cell contact was forced during plating by intertwining the major axons. These data suggested that differences in the ability to form cell–cell contacts might underlie the observed synaptic specificity. This notion was supported when fluorescent dye fills of L10 and R2 revealed a positive correlation between the amount of target contact and the frequency of synapse formation: L10–RUQ cultures showed much less target contact than L10–RB or R2–RUQ cultures. To examine the cellular mechanisms of these differences in target contact, presynaptic growth cones were observed as they interacted with target processes. L10–RUQ cultures showed much less fasciculation and more avoidance behavior compared to L10–RB and R2–RUQ cultures. This initial specificity suggested that the differences in amount of target contact arose through selective fasciculation and avoidance rather than through selective elimination after indiscriminate fasciculation. Selective fasciculation and avoidance might, therefore, aid in target selection by regulating the amount of contact between presynaptic processes and potential target cells. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
SYNOPSIS. The final level of development in the vertebrate nervoussystem concerns the patterning, or modelling, of the connectionsof the postmitotic neurons at target tissues. The growth oftarget tissue and the sprouting of newly-arrived axons is followedby a regulated distribution of the sprouts, and often the developmentof specific contacts (synapses). Usually there are more sproutsthan can be accommodated; the result is competition for targetsites and regression of unsuccessful endings, leading to thecharacteristic pattern of connections. Studies particularlyof the reinnervation of denervated skin in salamanders and ratshave revealed a number of conditions and processes that influencecompetition. Spatial and temporal constraints restrict the sproutingof certain nerves but not others. Substances conveyed to nerveterminals by fast axoplasmic transport can "neutralize" sproutinginfluences believed to derive from target tissues, and can "mask"target features that nerves recognize; other substances areneeded for sprouting to occur at all. Increased impulse activityin certain nerves accelerates their sprouting. Intriguingly,regenerating nerves will recapture targets from sprouted endings.Most of the identified conditions and processes occur in theadult animal; they could therefore provide a basis for remodellingof neuronal connections. Remodelling occurs when the characteristicearly hyperinnervation of target tissues converts after birthto the adult pattern; in cutaneous "touch domes" targets areeliminated in addition to endings. Perhaps remodelling playsa role in the development of behaviour even in mature animals.  相似文献   

8.
Retrograde signaling from target tissues has been shown to influence many aspects of neuronal development in a number of developmental systems. In these experiments using embryonic leeches (Hirudo medicinalis), we examined how depriving a neuron of contact with its peripheral target affects the development of the cell's central arborization. We focused our attention on the motor neuron cell 3, which normally stimulates dorsal longitudinal muscle fibers to contract. At different locations in the periphery and in embryos of several different stages, we cut the nerve containing the growing axon of cell 3. This surgery led to dramatic overgrowth of cell 3's central dendritic branches, which normally accept synaptic contacts from other neurons, including the inhibitory motor neuron cell 1. When cell 3's peripheral axon was cut relatively early in development, its overgrown central branches eventually retracted. However, cells that were disrupted later in development retained their overextended branches into adulthood. In addition, if the axon was cut close to the ganglion early in development, depriving the cell of contact with any dorsal tissues, the central branches failed to retract and were instead retained into adulthood. Unlike cell 3, the central branches of cell 1, which has the same peripheral target muscles as cell 3, remained unchanged following all axotomy protocols. These results suggest that in at least some neurons contact with peripheral targets can influence development of the central processes that normally mediate synaptic contacts.  相似文献   

9.
10.
The developmental influence of neuron-target interaction upon transmitter synthesis from labeled precursor and the capacity to release labeled transmitter were examined in dispersed cell cultures of embryonic ciliary ganglion neurons by comparing cultures of neurons plated alone and neurons plated upon pectoral myotubes. Of the total ACh synthesized from radiolabeled choline by neurons plated alone, more than half is via a Na+-dependent path, but a larger fraction of the synthesis is Na+ insensitive in culture than in mature neurons in vivo. In addition, at 1 week in culture the neurons lacking target failed to significantly increase ACh synthesis from the labeled choline in response to a previous high [K+]0 depolarization. Synthetic responsiveness to depolarization is a characteristic of mature nerve terminals in this preparation. One week after plating neurons onto myotube cultures, synthesis of ACh from the exogenous precursor is double that of sibling cultures lacking muscle, and prior depolarization with [K+]0 results in an increase in labeled product. Release from the labeled transmitter pool by the neurons with myotubes was also enhanced. [3H]ACh release elicited by depolarization via a Ca2+-dependent mechanism was more than fivefold higher in the cocultures. The influence of coculture with myotubes upon neuronal development is not duplicated by the neurons themselves despite formation of apparent interneuronal synapses (G. Crean, G. Pilar, J. Tuttle, and K. Vaca, 1982, J. Physiol. (London). 331, 87-104), by "fibroblasts" or medium conditioned over myotube cultures. Neurons under these conditions neither increase synthesis of [3H]ACh in response to a prior depolarization nor demonstrate enhanced basal [3H]ACh synthesis and release. Thus, coculture of embryonic ciliary ganglion neurons with a striated muscle target has a somewhat specific inductive effect, enhancing the capacity for neuronal [3H]ACh synthesis and release toward mature levels. This influence of a readily accessible target upon ciliary neuron cholinergic development in vitro may reflect a normal neuromuscular interaction occurring during embryogenesis.  相似文献   

11.
1. The effects of acetylcholine (ACh) on the soma of cultured ventrocaudal sensory neurons from the pleural ganglia of Aplysia kurodai were characterized. 2. Whole-cell recording was used for current and voltage clamping. ACh and other drugs were microapplied to the membranes of the cultured neurons. 3. Microapplication of ACh induced an outward current mediated by a conductance increase. No desensitization to repeated applications of ACh was detected. The threshold was 10(-7) M and the maximum response was at 10(-5) M. 4. The reversal potential in normal seawater is -80 mV, close to the K+ equilibrium potential. Increasing [K+]0 shifted the reversal potential by the amount predicted by the Nernst equation. Altering [Cl-]0 did not affect the reversal potential. Thus ACh opens a potassium channel in these sensory neurons and may act as a neurotransmitter on those neurons. 5. Atropine and d-tubocurarine partially blocked the ACh response. Hexamethonium had no obvious effect on this response. Tetraethylammonium reduced the response to 22% of control. Carbamylcholine and arecoline induced outward currents that were 71 and 12%, respectively, of the response to ACh. Nicotine and muscarine had almost no effect. 6. The ACh response was reduced by prior application of serotonin (5HT). The ACh response was also reduced by bath-applied 5HT, forskolin, and isobutylmethylxanthine. These data suggest that ACh activates an "S-like" channel in the ventrocaudal sensory neurons.  相似文献   

12.
The functional expression of the Ca2+-activated K+ current (IK[Ca]) is dependent on cell-cell interactions in developing chick autonomic neurons. In chick ciliary ganglion (CG) neurons, expression of macroscopic IK[Ca] coincides with the formation of synapses with target tissues. CG neurons that develop in vivo in the absence of normal target tissues fail to express functional IK[Ca], although voltage-activated Ca2+ currents and most other ionic currents are expressed at normal amplitudes and densities. CG neurons placed in cell culture prior to formation of synapses with target tissues also fail to express macroscopic IK[Ca]. However, CG neurons cultured in the presence of a heat- and trypsin-sensitive extract of target tissues express IK[Ca] at normal levels. Similarly, interactions with target tissue appear to regulate the expression of whole-cell IK[Ca] in developing chick sympathetic ganglion neurons, although the relevant trophic factors appear to be different from those required by CG neurons. In addition to target tissue interactions, an intact preganglionic innervation is required for the normal in vivo development of IK[Ca] in chick CG neurons. The trophic effects of the afferent innervation do not require synaptic activation of the CG neurons, indicating secretion of a trophic factor, possibly an isoform of β-neuregulin. The results are consistent with the hypothesis that target- and nerve terminal-derived trophic factors interact at a posttranslational level in the regulation of a functional IK[Ca]. Together, this body of data demonstrates an essential role for cell-cell interactions in the differentiation of neuronal excitability. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 23–36, 1998  相似文献   

13.
Responses of neuroblastoma cells to iontophoretically applied acetylcholine   总被引:3,自引:0,他引:3  
Dissociated mouse neuroblastoma cells were studied in vitro by using intracellular microelectrodes for electrical stimulation and recording. Some, but not all cells, which exhibited well developed action potentials to electrical stimulation also showed changes in membrane potential to iontophoretically applied acetylcholine (ACh). The types of responses to ACh varied. Short latency depolarizing responses to pulses of ACh (similar to those obtained with skeletal muscle) as well as sustained depolarization to steady ACh application (D response) occurred. A longer latency prolonged hyperpolarizing response (H response) and bi- and triphasic combinations of H and D responses were also seen. Pairs of cells showing morphologic contact were tested for the occurrence of effective synaptic coupling by placing intracellular microelectrodes in each cell. In none of 95 cases tested did spike activity produced by direct electrical stimulation of one cell elicit a synaptic potential of 200 μv or more in the other.  相似文献   

14.
Sympathetic neurons synthesize and secrete pro-nerve growth factor protein   总被引:2,自引:0,他引:2  
Postmitotic sympathetic neuronal survival is dependent upon nerve growth factor (NGF) provided by peripheral targets, and this dependency serves as a central tenet of the neurotrophic hypothesis. In some other systems, NGF has been shown to play an autocrine role, although the pervasiveness and significance of this phenomenon within the nervous system remain unclear. We show here that rat sympathetic neurons synthesize and secrete NGF. NGF mRNA is expressed in nearly half of superior cervical ganglion sympathetic neurons at embryonic day 17, rising to over 90% in the early postnatal period, and declining in the adult. Neuronal immunoreactivity is reduced when retrograde transport is interrupted by axotomy, but persists in a subpopulation of neurons despite diminished mRNA expression, suggesting that intrinsic protein synthesis occurs. Cultured neonatal neurons express NGF mRNA, which is maintained even when they are undergoing apoptosis. To determine which NGF isoforms are secreted, we performed metabolic labeling and immunoprecipitation of NGF-immunoreactive proteins synthesized by cultured NGF-dependent and -independent neurons. Conditioned medium contained high molecular weight NGF precursor proteins, which varied depending upon the state of NGF dependence. Mature NGF was undetectable by these methods. High molecular weight NGF isoforms were also detected in ganglion homogenates, and persisted at diminished levels following axotomy. We conclude that sympathetic neurons express NGF mRNA, and synthesize and secrete pro-NGF protein. These findings suggest that a potential NGF-sympathetic neuron autocrine loop may exist in this prototypic target-dependent system, but that the secreted forms of this neurotrophin apparently do not support neuronal survival.  相似文献   

15.
We examined whether regenerating axons from adult rat ganglion cells are able to recognize their appropriate target region in vitro. Explants from adult rat retina were cocultured with embryonic sagittal midbrain slices in Matrigel®. The midbrain sections contained the superior colliculus, the main target for retinal ganglion cell axons in rats, and the inferior colliculus. We observed a statistically significant preference of both temporal and nasal retinal axons to grow toward their appropriate target region (anterior and posterior superior colliculus, respectively). No preferential growth of retinal ganglion cell axons was detected in controls, for which retinal explants were cultured on their own. When retinal ganglion cell axons were given a choice between superior colliculus and inferior colliculus, axons from nasal retina preferentially grew toward the posterior superior colliculus and avoided the inferior colliculus. In contrast, temporal axons in the same assay did not show preference for either of the colliculi. These findings suggest that regenerating axons from adult rat retina are able to recognize target-specific guidance cues released from embryonic midbrain targets in vitro. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 379–387, 1998  相似文献   

16.
We have studied the development of a neuromuscular system for which mature function has been lost through evolution in the grasshopper, Barytettix psolus (Cohn and Cantrall, 1974). Barytettix is flightless throughout life and has only vestigial wings that are incapable of active movement. Adult Barytettix lack muscles homologous to the indirect flight muscles of locusts and grasshoppers that fly, while other thoracic muscles are similar. We have found, using light and electron microscopic examination of tissues from various developmental stages, that the metathoracic dorsal longitudinal muscle is present and is innervated during nymphal life but is absent in adults. Yet its nerve persists and, in the adult, contains axonal presynaptic specializations opposite inappropriate targets such as glial processes and basal lamina. Our findings indicate that selective muscle death during development is one mechanism underlying the reduction of the flight system of Barytettix through evolution. The finding that presynaptic terminals persist in the absence of the muscle indicates that the muscle and its innervation follow programs of development that are at least partially independent and reinforces the concept that in insects motorneurons, and perhaps neurons in general, are not dependent upon trophic influences from their targets for survival and maintenance of their differentiated phenotype.  相似文献   

17.
Five short hammerhead ribozymes (Rzs) were constructed and tested, using a range ofin vitro reaction conditions, for catalytic activity against the mRNA encoding the lignin-forming peroxidase (TPX) of tobacco. Although all 5 Rzs were shown to be able to cleave the RNA substrate, percentage cleavage varied with pre-denaturation of Rz and substrate, incubation temperature, length of incubation and ribozyme (Rz)-to-substrate ratio. One Rz with two catalytic units and 60 nucleotides of complementary sequence in 3 regions was shown to most efficiently cleave the substrate under allin vitro conditions tested. This ribozyme cleaved better than the two single ribozymes from which it was made. The superior cleaving ability of this Rz was shown to be due to the accessibility of the chosen target site and to the increased length of the hybridizing arms spanning this accessible region of the RNA.  相似文献   

18.
The culture of rat submandibular ganglion cells is described. The neurons can be distinguished from the non-neuronal cells in the cultures by their morphology. Recording with whole-cell voltage-clamp techniques indicates that the neurons have resting potentials of about -55 mV and that the kinetics of the ionic channels opened by locally perfused acetylcholine (ACh) are very similar to those previously observed in adult submandibular ganglion neurons. The major differences observed are that the recorded cell input impedances are much higher than those recorded with microelectrodes from adult neurons and that the sensitivity of the cultured neurons to ACh is much less than that of the adult neurons. Whether the latter is due to changed receptor properties or to the presence of fewer receptors is not known.  相似文献   

19.
Neurogenesis persists in the adult dentate gyrus of rodents throughout the life of the organism. The factors regulating proliferation, survival, migration, and differentiation of neuronal progenitors are now being elucidated. Cells from the adult hippocampus can be propagated, cloned in vitro, and induced to differentiate into neurons and glial cells. Cells cultured from the adult rodent hippocampus can be genetically marked and transplanted back to the adult brain, where they survive and differentiate into mature neurons and glial cells. Although multipotent stem cells exist in the adult rodent dentate gyrus, their biological significance remains elusive. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 249–266, 1998.  相似文献   

20.
We have purified and characterized a galactose-binding lectin from the gonads of the mollusk Aplysia californica that modulates neurite outgrowth from cultured Aplysia neurons. Agglutination of sheep red blood cells (RBC) by this lectin, termed Aplysia gonad lectin (AGL), is inhibited strongly by galactose and to a lesser extent by fucose. On SDS-PAGE, AGL appears as a single species with a molecular weight of 34 kD under reducing conditions, and 65 kD under nonreducing conditions. This suggests that AGL is a disulfide-linked dimer in its native state. Amino terminal sequence analysis of purified AGL indicates a similarity to another galactose-binding lectin, phytohemagglutinin-E (E-PHA), found in red kidney beans. By using polyclonal antibodies prepared against AGL, we have found that the lectin is present in the gonads and eggs but not in other tissues of adult Aplysia californica. We have examined biological actions of AGL on Aplysia neurons growing in primary cell culture. AGL affects several properties of these neurons. The addition of 100 nM AGL to cultured neurons enhances neurite outgrowth from the cell soma, resulting in a greater number of primary processes. In addition, AGL acts as a neurotrophic agent, increasing neurite viability in vitro. This trophic effect is not seen with concanavalin A (con A), another lectin known to affect several properties of cultured Aplysia neurons. The results are consistent with the suggestion that AGL may play a role in neuronal differentiation and/or maintenance of viability. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号