共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Cotrina ML González-Hoyuela M Barbas JA Rodríguez-Tébar A 《Developmental biology》2000,228(2):326-336
Neurotrophins control neuron number during development by promoting the generation and survival of neurons and by regulating programmed neuronal death. In the latter case, the cell death induced by nerve growth factor (NGF) in the developing chick retina is mediated by p75(NTR), the common neurotrophin receptor (J. M. Frade, A. Rodriguez-Tebar, and Y.-A. Barde, 1996, Nature 383, 166-168). Here we show that NGF also induces the programmed death of paraxial mesoderm cells in the developing somites. Both NGF and p75(NTR) are expressed in the somites of chick embryos at the time and the place of programmed cell death. Moreover, neutralizing the activity of endogenous NGF with a specific blocking antibody, or antagonizing NGF binding to p75(NTR) by the application of human NT-4/5, reduces the levels of apoptotic cell death in both the sclerotome and the dermamyotome by about 50 and 70%, respectively. Previous data have shown that Sonic hedgehog is necessary for the survival of differentiated somite cells. Consistent with this, Sonic hedgehog induces a decrease of NGF mRNA in somite explant cultures, thus showing the antagonistic effect of NGF and Sonic hedgehog with respect to somite cell survival. The regulation of programmed cell death by NGF/p75(NTR) in a mesoderm-derived tissue demonstrates the capacity of neurotrophins and their receptors to influence critical developmental processes both within and outside of the nervous system. 相似文献
3.
4.
Parkinson's disease is a common and severe debilitating neurological disease that results from massive and progressive degenerative death of dopamine neurons in the substantia nigra, but the mechanisms of neuronal degeneration and disease progression remains largely obscure. We are interested in possible implications of low-affinity p75 neurotrophin receptor (p75NTR), which may mediate neuronal apoptosis in the central nervous system, in triggering cell death of the nigral dopamine neurons. The RT-PCR and immunohistochemistry were carried out to detect if p75NTR is expressed in these nigral neurons and up-regulated by kainic acid (KA) insult in adult rats. It revealed p75NTR-positive immunoreactivity in the substantia nigra, and co-localization of p75NTR and tyrosine hydroxylase (TH) was found in a large number of substantia nigra neurons beside confirmation of p75NTR in the choline acetyltransferase (ChAT)-positive forebrain neurons. Cell count data further indicated that about 47-100% of TH-positive nigral neurons and 98-100% of ChAT-positive forebrain neurons express p75NTR. More interestingly, significant increasing in both p75NTR mRNA and p75NTR-positive neurons occurred rapidly following KA insult in the substantia nigra of animal model. The present study has provided first evidence on p75NTR expression and KA-inducing p75NTR up-regulation in substantia nigra neurons in rodent animals. Taken together with previous data on p75NTR functions in neuronal apoptosis, this study also suggests that p75NTR may play important roles in neuronal cell survival or excitotoxic degeneration of dopamine neurons in the substantia nigra in pathogenesis of Parkinson's disease in human beings. 相似文献
5.
Weskamp G Schlöndorff J Lum L Becherer JD Kim TW Saftig P Hartmann D Murphy G Blobel CP 《The Journal of biological chemistry》2004,279(6):4241-4249
Protein ectodomain shedding, the proteolytic release of the extracellullar domain of membrane-tethered proteins, can dramatically affect the function of cell surface receptors, growth factors, cytokines, and other proteins. In this study, we evaluated the activities involved in ectodomain shedding of p75NTR, a neurotrophin receptor with critical roles in neuronal differentiation and survival. p75NTR is shed in a variety of cell types, including dorsal root ganglia cells and PC12 cells. In Chinese hamster ovary cells, inhibitors of the MEK/ERK and p38 MAP kinase pathways uncovered distinct signaling pathways required for the constitutive and stimulated shedding of p75NTR. Stimulated p75NTR shedding is abrogated in M2 mutant Chinese hamster ovary cells that lack functional tumor necrosis factor-alpha converting enzyme (TACE, also referred to as ADAM17) and in cells isolated from adam17-/- mice, but not in cells from adam9/12/15-/- or adam10-/- mice. Stimulated p75(NTR) shedding is strongly reduced by deletion of 15 amino acid residues in its extracellular membrane-proximal stalk domain. However, similar to other shed proteins, point mutations and overlapping shorter deletions within this region have little or no effect on shedding. Because ectodomain shedding of p75NTR releases a soluble ectodomain and could also be a prerequisite for its regulated intramembrane proteolysis, these findings may have important implications for the functional regulation of p75NTR. 相似文献
6.
7.
Characterization of symmetric complexes of nerve growth factor and the ectodomain of the pan-neurotrophin receptor, p75NTR 总被引:4,自引:0,他引:4
Aurikko JP Ruotolo BT Grossmann JG Moncrieffe MC Stephens E Leppänen VM Robinson CV Saarma M Bradshaw RA Blundell TL 《The Journal of biological chemistry》2005,280(39):33453-33460
Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological conditions. However, co-expression of these receptors leads to enhanced neuronal survival upon NGF stimulation, possibly through a ternary p75(NTR) x NGF x TrkA complex. We have expressed human p75(NTR) ligand binding domain as a secreted glycosylated protein in Trichoplusia ni cells. Following assembly and purification of soluble p75(NTR) x NGF complexes, mass spectrometry, analytical ultracentrifugation, and solution x-ray scattering measurements are indicative of 2:2 stoichiometry, which implies a symmetric complex. Molecular models of the 2:2 p75(NTR) x NGF complex based on these data are not consistent with the further assembly of either symmetric (2:2:2) or asymmetric (2:2:1) ternary p75(NTR) x NGF x TrkA complexes. 相似文献
8.
Lad SP Peterson DA Bradshaw RA Neet KE 《The Journal of biological chemistry》2003,278(27):24808-24817
A long-standing question in neurotrophin signal transduction is whether heteromeric TrkA-p75NTR complexes possess signaling capabilities that are significantly different from homo-oligomeric TrkA or p75NTR alone. To address this issue, various combinations of transfected PC12 cells expressing a platelet-derived growth factor receptor-TrkA chimera and the p75NTR-selective nerve growth factor mutant (Delta9/13 NGF) were utilized to selectively stimulate TrkA or p75NTR signaling, respectively. The contribution of individual and combined receptor effects was analyzed in terms of downstream signaling and certain end points. The results suggest two unique functions for the high affinity heteromeric NGF receptor site: (a) integration of both the MAPK and Akt pathways in the production of NGF-induced neurite outgrowth, and (b) rapid and sustained activation of the Akt pathway, with consequent long term cellular survival. Whereas activation of TrkA signaling is sufficient for eliciting neurite outgrowth in PC12 cells, signaling through p75NTR plays a modulatory role, especially in the increased formation of fine, synaptic "bouton-like" structures, in which both TrkA and p75NTR appear to co-localize. In addition, a new interaction in the TrkA/p75NTR heteromeric receptor signal transduction network was revealed, namely that NGF-induced activation of the MAPK pathway appears to inhibit the parallel NGF-induced Akt pathway. 相似文献
9.
10.
11.
Wilmet JP Tastet C Desruelles E Ziental-Gelus N Blanckaert V Hondermarck H Le Bourhis X 《The International journal of developmental biology》2011,55(7-9):801-809
In breast cancer cells, the neurotrophin receptor p75(NTR) acts as a prosurvival factor able to stimulate resistance to apoptosis, but its mechanism of action remains incompletely defined. In this study, we investigated the global proteome modification induced by p75(NTR) overexpression in breast cancer cells treated by the pro-apoptotic agent tumor necrosis factor (TNF)-related-apoptosis-inducing-ligand (TRAIL). p75(NTR) was stably overexpressed in the MCF-7 breast cancer cells and the impact of a treatment by TRAIL was investigated in wild type vs. p75(NTR) overexpressing cells. Proteins were separated in two-dimensional electrophoresis, and regulated spots were detected by computer assisted analysis before identification by MALDI-TOF/TOF mass spectrometry. In the absence of TRAIL treatment, p75(NTR) did not induce any change in the proteome of breast cancer cells. In contrast, after treatment with TRAIL, fragments of cytokeratin-8, -18 and -19, as well as full length cytokeratin-18, were up-regulated by p75(NTR) overexpression. Of note, spectrin alpha-chain and the ribosomal protein RPLP0 were induced by TRAIL, independently of p75(NTR) level. Interestingly, the well known stress-induced protein HSP-27 was less abundant when p75(NTR) was overexpressed, indicating that p75(NTR) overexpression reduced TRAIL induced cell stress. These data indicate that overexpression of p75(NTR) induces proteome modifications in breast cancer cells and provide information on how this receptor contributes in tumor cell resistance to apoptosis. 相似文献
12.
Raile K Klammt J Garten A Laue S Blüher M Kralisch S Klöting N Kiess W 《Regulatory peptides》2006,135(1-2):30-38
BACKGROUND: The function and survival of pancreatic beta-cells strongly depend on glucose concentration and on autocrine secretion of peptide growth factors. NGF and its specific receptors TrkA and p75NTR play a pivotal role in islet survival and glucose-dependent insulin secretion. We therefore investigated whether or not glucose concentration influences expression of TrkA and p75NTR in rat islets and in INS-1E beta-cells at the mRNA and protein level (INS-1E). METHODS: Gene expression of the NGF receptors TrkA and p75NTR but also of the metabolic gene liver-type pyruvate kinase (L-PK) and the neurotrophin receptors TrkB and TrkC was studied by semi-quantitative PCR and by real-time PCR in islets and INS-1E beta-cells. RESULTS: In rat islets, high glucose exposure (25 mmol/l) increased gene expression of TrkA, p75NTR and L-PK. Expression of TrkA, p75NTR and L-PK reflected insulin secretion at the respective glucose concentration. In rat INS-1E insulinoma cells, expression of L-PK and p75NTR was suppressed by low glucose as in the islets, while expression of TrkA was strongly increased by low glucose levels and thus was regulated differently than in islets. Expression of TrkB and TrkC was not regulated by glucose concentration at all. TrkA protein was regulated in the same fashion as its mRNA expression, while p75NTR protein was not significantly regulated within 24 h. CONCLUSION: Glucose interacts with gene expression of TrkA and p75NTR that are strongly involved in beta-cell growth and glucose-dependent insulin secretion. The fact that TrkA expression is regulated the opposite way in islets and in INS-1E beta-cells might reflect their specific grade of differentiation and tendency to proliferate. 相似文献
13.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury. 相似文献
14.
Nerve growth factor (NGF) exerts its pro-apoptotic effect via the P75NTR receptor in a cell cycle-dependent manner. 总被引:3,自引:0,他引:3
Nerve growth factor (NGF), the prototypic member of the neurotrophin family of growth factors, exerts its action via two receptors, P75NTR and TrkA, the expression of which varies at the cell surface of neuroblastoma cells (SH-SY5Y cells) in a cycle phase-specific manner. NGF was pro-apoptotic on growing cells expressing preferentially P75NTR and exhibited a potent anti-apoptotic effect on quiescent cells, when TrkA was prevalent at the cell surface, showing that NGF can have a dual action on SH-SY5Y cells depending on the relative cell surface expression of TrkA and P75NTR. The pro-apoptotic activity of NGF but not its anti-apoptotic activity was abrogated by an antibody against the extracellular domain of P75NTR and in cell isolated from P75NTR knock-out mice indicating that NGF exhibits a proapoptotic activity via P75NTR exclusively. On the other hand, we showed that the anti-apoptotic activity of NGF was specifically mediated by an interaction with TrkA with no contribution of P75NTR, as demonstrated on SK-N-BE cells transfected with TrkA in which NGF was a potent anti-apoptotic compound but did not exhibit any pro-apoptotic activity. These results support the hypothesis that the survival response to NGF depends on its binding to TrkA without any involvement of P75NTR which in turn selectively mediates the pro-apoptotic activity of NGF with no contribution of TrkA and show that, depending on the growth state of the cells, NGF exhibits dual pro- or anti-apoptotic properties via P75NTR and TrkA, respectively. 相似文献
15.
When motoneuron axons in peripheral nerves are injured, the expression of the p75 low-affinity neurotrophin receptor (p75) increases in their cell bodies and axons, as well as in the Schwann cells undergoing Wallerian degeneration in the distal excised nerve segment. To understand the role of p75 in the events following nerve injury, we have examined the survival and regeneration of motoneurons in mice lacking the p75 receptor. In adult p75 (−/−) mice, functional recovery of whiskers movement following a facial nerve crush occurred slightly earlier than in p75 (+/+) mice, and some recovery of function over a 25-day interval following a nerve cut occurred more frequently in p75 (−/−) mice. Motoneuron profile numbers were slightly reduced in p75 (−/−) mice, and there were correspondingly fewer axons in the facial nerve. At 25 days following axotomy, profile survival in the adult p75 (−/−) mice was significantly improved compared to p75 (+/+) mice (mean 85% ± standard error of the mean 3%, n = 11 vs. 67 ± 5%, n = 11 in CD-1 mice and 68.0 ± 4%, n = 6 in balb/c mice), and significantly more regenerating axons were present in the distal facial nerve. After axotomy on postnatal day 1, there was almost total loss of motoneuron profiles in the lateral facial nucleus in p75 (+/+) mice (1.7 ± 0.3% remained, n = 5), while significantly more survived in p75 (−/−) mice (17 ± 2.5%, n = 6) . We conclude that expression of p75 in motoneurons or Schwann cells following facial nerve injury is not necessary for motoneuron survival or prompt regeneration of their axons; rather, p75 may increase their risk of dying. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 1–9, 1998 相似文献
16.
Bogenmann E Thomas PS Li Q Kim J Yang LT Pierchala B Kaartinen V 《Genesis (New York, N.Y. : 2000)》2011,49(11):862-869
The p75(NTR) neurotrophin receptor has been implicated in multiple biological and pathological processes. While significant advances have recently been made in understanding the physiologic role of p75(NTR) , many details and aspects remain to be determined. This is in part because the two existing knockout mouse models (Exons 3 or 4 deleted, respectively), both display features that defy definitive conclusions. Here we describe the generation of mice that carry a conditional p75(NTR) (p75(NTR-FX) ) allele made by flanking Exons 4-6, which encode the transmembrane and all cytoplasmic domains, by loxP sites. To validate this novel conditional allele, both neural crest-specific p75(NTR) /Wnt1-Cre mutants and conventional p75(NTR) null mutants were generated. Both mutants displayed abnormal hind limb reflexes, implying that loss of p75(NTR) in neural crest-derived cells causes a peripheral neuropathy similar to that seen in conventional p75(NTR) mutants. This novel conditional p75(NTR) allele will offer new opportunities to investigate the role of p75(NTR) in specific tissues and cells. 相似文献
17.
Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen 总被引:7,自引:0,他引:7
W C Mobley J E Woo R H Edwards R J Riopelle F M Longo G Weskamp U Otten J S Valletta M V Johnston 《Neuron》1989,3(5):655-664
In prior studies, nerve growth factor (NGF) administration induced a robust, selective increase in the neurochemical differentiation of caudate-putamen cholinergic neurons. In this study, expression of NGF and its receptor was examined to determine whether endogenous NGF might serve as a neurotrophic factor for these neurons. The temporal pattern of NGF gene expression and the levels of NGF mRNA and protein were distinct from those found in other brain regions. NGF and high-affinity NGF binding were present during cholinergic neurochemical differentiation and persisted into adult-hood. An increase in NGF binding during the third postnatal week was correlated with increasing choline acetyltransferase activity. The data are consistent with a role for endogenous NGF in the development and, possibly, the maintenance of caudate-putamen cholinergic neurons. 相似文献
18.
Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. 总被引:13,自引:0,他引:13 下载免费PDF全文
A random-primed cDNA expression library constructed from the mRNA of neuroblastoma cells (NG108) was used to clone a specific rabies virus (RV) receptor. A soluble form of the RV glycoprotein (Gs) was utilized as a ligand to detect positive cells. We identified the murine low-affinity nerve-growth factor receptor, p75NTR. BSR cells stably expressing p75NTR were able to bind Gs and G-expressing lepidopteran cells. The ability of the RV glycoprotein to bind p75NTR was dependent on the presence of a lysine and arginine in positions 330 and 333 respectively of antigenic site III, which is known to control virus penetration into motor and sensory neurons of adult mice. P75NTR-expressing BSR cells were permissive for a non-adapted fox RV isolate (street virus) and nerve growth factor (NGF) decreased this infection. In infected cells, p75NTR associates with the RV glycoprotein and could be precipitated with anti-G monoclonal antibodies. Therefore, p75NTR is a receptor for street RV. 相似文献
19.
Nerve growth factor and tissue repair remodeling: trkA(NGFR) and p75(NTR), two receptors one fate 总被引:4,自引:0,他引:4
Micera A Lambiase A Stampachiacchiere B Bonini S Bonini S Levi-Schaffer F 《Cytokine & growth factor reviews》2007,18(3-4):245-256
This review deals with the role of nerve growth factor (NGF) in healing process as a result of injury. The role of both trkA(NGFR) and p75(NTR) specific NGF receptors and their contribution in the complex network of tissue repair process, is discussed and highlighted in view of recent findings. In fact, NGF represents a significant advance in the treatment of etiologically different ulcers (corneal ulcers, pressure ulcers, post-viral infections, chemical burns) and might shorten the recovery process. For these diseases, no specific treatment is actually available. It is reasonable that apart from NGF and/or neurotrophins a different time-course of trkA(NGRF)/p75(NTR) expression, might regulate the final process. In summary, these novel findings on the potential pro-healing capacity of NGF might open new possibilities for this growth factor in modulating the healing processes in several pathological conditions. 相似文献
20.
Apart from its high affinity receptor TrkA, nerve growth factor (NGF) can also stimulate the low affinity receptor p75(LNTR) and induce a Trk-independent signaling cascade. We examined the possible involvement of mitogen-activated protein kinase (MAPK) in this signaling pathway in neuronal cultures of the cerebellum of P2-aged rats and PCNA cells; both cell types express p75(LNTR) but not TrkA. We found a fast and transient phosphorylation of p42- and p44-MAPK after stimulation with NGF or C(2)-ceramide which proved to be sensitive to inhibition of MAPK kinase and protein kinase A (PKA). As stimulation with NGF also activated p21Ras it can be concluded that at least part of the observed MAPK activation was effected via p21Ras and via PKA. 相似文献