首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Apoptosis is a stochastic, physiological form of cell death that is characterized by unique morphological and biochemical properties. A defining feature of apoptosis in all cells is the apoptotic volume decrease or AVD, which has been considered a passive component of the cell death process. Most cells have inherent volume regulatory increase (RVI) mechanisms to contest an imposed loss in cell size, however T-cells are unique in that they do not have a RVI response. We utilized this property to explore potential regulatory roles of a RVI response in apoptosis. Exposure of immature T-cells to hyperosmotic stress resulted in a rapid, synchronous, and caspase-dependent apoptosis. Multiple rounds of osmotic stress followed by recovery of cells in normal media resulted in the development of a population of cells that were resistant to osmotic stress induced apoptosis. These cells were also resistant to other apoptotic stimuli that activate via the intrinsic cell death pathway, while remaining sensitive to extrinsic apoptotic stimuli. Interestingly, these osmotic stress resistant cells showed no increase in anti-apoptotic proteins, and released cytochrome c from their mitochondria following exposure to intrinsic apoptotic stimuli. The osmotic stress resistant cells developed a RVI response, and inhibition of the RVI restored sensitivity to apoptotic agents. Analysis of apoptotic signaling pathways showed a sustained increase in phospho-AKT, whose inhibition also prevented an RVI response resulting in apoptosis. These results define a critical role of volume regulation mechanisms in apoptotic resistance.  相似文献   

3.
We have performed an in vitro selection for an anti-apoptotic phenotype that resembles the selection process that pre-malignant cells undergo in the initial phase of carcinogenesis in vivo. Using the cervical carcinoma cell line HeLa S3 as a model system, the selection procedure yielded cell clones that displayed increased resistance to apoptosis induced by Fas, tumor necrosis factor-related apoptosis-inducing ligand, and serum starvation. Gene expression profiling using gene family focused cDNA arrays revealed numerous genes that are differentially expressed in HeLa S3 and the resistant subclones and therefore are potentially involved in the definition of sensitivity to apoptotic stimuli. From the genes identified in this functional genomics approach we validated the anti-apoptotic activity of the membrane-anchored matrix metalloproteinase 15 (MMP-15) by means of small interfering RNA-mediated knock-down and ectopic expression in parental HeLa S3 cells and, to confirm a more general significance of our findings, in other cancer cell lines. The in vivo relevance of these findings is supported by the overexpression of MMP-15 in human lung adenocarcinoma compared with normal lung. Because MMP-15 is known to promote invasion, our results suggest that this protease connects metastasis and apoptosis resistance by an unknown regulatory mechanism. Our findings therefore strongly suggest that cancer characteristics such as metastatic potential, which are thought to evolve late in cancer progression, could be manifested early on by selection for an anti-apoptotic phenotype.  相似文献   

4.
The major heat shock protein, hsp70, is known to contribute to the mechanisms of cell protection against a variety of stress and cytotoxic factors, providing an increase of cell survival. Whether hsp70 could be implicated in the rescue of cells from stress-induced death proceeding on apoptotic pathway is not well established. Here we report that susceptibility of myeloid and lymphoid cell lines to apoptosis induced by heat shock or ethanol coincides with hsp70 content and can be modulated by changes in expression of this protein. Cells of lymphoid and myeloid lines differing in basal and inducible level of the protein were tested. The cells containing higher amounts of hsp70 (U937, Jurkat, Molt4) were more resistant to the apoptosis-inducing stimuli then cells which accumu-late lower amounts of the protein (HL60) and especially those lacking the protein (NSO). Inhibition of hsp70 accumulation by quercetin made cells more susceptible to the same apoptotic inducer. Enhancement of hsp70 expression by previous heating or by liposomal delivery of the exogenic protein to the cells lacking hsp70 made them more resistant to apoptosis. The possible mechanisms of the hsp70 protective effect in apoptosis are discussed.  相似文献   

5.
The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems   总被引:47,自引:0,他引:47  
Heat shock protein 70 (hsp70) is a stress-inducible protein that prevents apoptosis induced by a wide range of cytotoxic agents by an as yet undefined mechanism. The caspase family of cysteine proteases have been attributed a central role in the execution of apoptosis. However, several cases of caspase-independent apoptosis have been recently reported, suggesting that caspases may not be necessary for apoptosis in all cells. This study examines the protective role of hsp70 in both caspase-dependent and -independent apoptosis. Hydrogen peroxide (H2O2) used at low and high concentrations in Jurkat T cells induces caspase-dependent and -independent apoptosis, respectively. A hsp70-transfected Jurkat clone was used to observe the protection mediated by hsp70 during these two forms of apoptosis. Results reveal that hsp70 inhibits both caspase-dependent and -independent apoptosis. Furthermore, measurement of caspase-3 activity during caspase-dependent apoptosis revealed that caspase activation was inhibited in hsp70 transfectants. Early apoptotic events, such as mitochondrial depolarization, cytochrome c release, and increased intracellular calcium, were demonstrated to be common to both caspase-dependent and -independent H2O2-induced apoptosis. The inhibition of these events by hsp70 suggests that hsp70 may be an important anti-apoptotic regulator, functioning at a very early stage in the apoptotic pathway.  相似文献   

6.
Abstract. The expression of heat-shock proteins (HSPs) is enhanced in stressed cells and can protect cells from stress-induced injury. However, existing data about the relationship between apoptosis and HSP expression is contradictory. In this paper, a mouse lymphoma cell death model system is used to detect simultaneously both the process of apoptosis and the level of HSP expression. The model was established after discovering that spontaneous apoptosis and spontaneous cell surface HSP expression occurs in EL-4 mouse lymphoma cells during normal optimal culture conditions. The data show that apoptotic EL-4 cells had higher levels of hsp25, hsp60, hsp70 and hsp90 exposed on the plasma membrane surface than viable cells. The level of surface HSPs was found to increase through several stages of early and late apoptotic death as measured by flow cytometry, with the highest levels observed during the loss of cell membrane phospholipid asymmetry. Heat shock and actinomycin D significantly increased the proportion of apoptotic cells in culture. However, hyperthermia only stimulated a weak and temporary increase in surface HSP expression, whereas actinomycin D strongly elevated the level of surface and intracellular HSPs, particularly in live cells. These results show an associative relationship between apoptosis and HSP expression. The relationship between the progression of cell death and HSP expression suggests a role for membrane HSP expression in programmed cell death.  相似文献   

7.
8.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

9.
The cytopathic effect evidenced by cells infected with avian reovirus S1133 suggests that this virus may induce apoptosis in primary cultures of chicken embryo fibroblasts. In this report we present evidence that avian reovirus infection of cultured cells causes activation of the intracellular apoptotic program and that this activation takes place during an early stage of the viral life cycle. The ability of avian reoviruses to induce apoptosis is not restricted to a particular virus strain or to a specific cell type, since different avian reovirus isolates were able to induce apoptosis in several avian and mammalian cell lines. Apoptosis was also provoked in ribavirin-treated avian reovirus-infected cells and in cells infected with UV-irradiated reovirions, indicating that viral mRNA synthesis and subsequent steps in viral replication are not needed for apoptosis induction in avian reovirus-infected cells and that the number of inoculated virus particles, not their infectivity, is the critical factor for apoptosis induction by avian reovirus. Our finding that apoptosis is no longer induced when intracellular viral uncoating is blocked indicates that intraendosomal virion disassembly is required for apoptosis induction and that attachment and uptake of parental reovirions are not sufficient to cause apoptosis. Taken together, our results suggest that apoptosis is triggered from within the infected cell by viral products generated after intraendosomal uncoating of parental reovirions.  相似文献   

10.
王琳  梁旭方  廖婉琴  周天鸿 《遗传》2006,28(8):1009-1014
细胞凋亡是细胞在基因调控下发生的主动消亡过程,在脊椎动物胚胎发育过程中非常重要。斑马鱼作为一种十分理想的发育分子生物学研究模型,在有关细胞凋亡在诸如形态发生、性别分化等方面功能之活体在位研究中日益受到重视。目前,斑马鱼胚胎发育中主要凋亡通路研究已进行了不少工作,特别是caspase及其它凋亡调控基因在斑马鱼中已被成功克隆,通过转基因斑马鱼胚胎中胁迫诱导细胞凋亡并研究其信号通路以及斑马鱼胚胎形态发生的异常改变,为阐明这些凋亡调控基因与发育之间的关系提供了一个强有力的手段。  相似文献   

11.
12.
13.
14.
In Ciona intestinalis, the elimination of extra-embryonic test cells during early stage of development is delayed by a fertilization signal. Test cells undergo a caspase-dependent apoptosis event repressed by thyroxine (T4)-activated NF-kappaB. When apoptosis was experimentally blocked, the hatching stage was delayed. The incubation of unfertilized eggs with a 1-h-fertilized egg extract or purified T4 restored apoptosis in test cells at a similar timing than found in fertilized eggs. Ciona expresses specific genes forming a functional IkappaB/NF-kappaB pathway. One, Ci-p65, was transiently induced upon fertilization via T4 and found to exert its anti-apoptotic role in test cells nuclei as well as in a reconstituted cell system. Blocking NF-kappaB activity by dexamethasone-induced overexpression of Ci-IkappaB abrogated the repression of apoptosis in test cells. Overall, the data are consistent for defining a central coupling role of both T4 and NF-kappaB during early embryo development.  相似文献   

15.
During embryonic development, the avian bursa of Fabricius selects B cell precursors that have undergone productive V(D)J recombination for expansion in oligoclonal follicles. During this expansion, Ig diversity is generated by gene conversion. We have used retroviral gene transfer in vivo to introduce surface Ig molecules that lack V(D)J-encoded determinants into B cell precursors. This truncated mu heavy chain supports both B cell expansion within embryo bursal lymphoid follicles and gene conversion. We show that individual follicles can be colonized exclusively by cells expressing the truncated mu chain and lacking endogenous surface IgM, ruling out a requirement for V(D)J-encoded determinants in the establishment of bursal lymphoid follicles. In striking contrast to their normal development in the embryo, bursal cells expressing the truncated mu-chain exhibit reduced rates of cell division and increased levels of apoptosis after hatching. The level of apoptosis in individual follicles reflects the proportion of cells within the follicle that express the truncated mu-chain. In particular, high levels of apoptosis are associated with follicles containing exclusively cells expressing the truncated micro receptor. Thus, apoptotic elimination of such cells is not due to competition within the follicle by cells expressing endogenous surface IgM receptors. This provides the first direct demonstration that the regulation of B cell development in the avian bursa after hatching differs fundamentally from that seen in the embryo. The requirement for intact IgM expression when the bursa is exposed to exogenous Ag implicates a role for Ag in avian B cell development after hatching.  相似文献   

16.
17.
Differentiation and apoptosis are precisely regulated events in early embryogenesis. Retinoic acid-induced differentiation in the embryonal carcinoma (EC) cell line NCR-G3 triggers concurrent induction of apoptosis. Using this system, which serves as a model of early embryogenesis, the expression of various bcl-2-related genes was analyzed as these genes display either positive or negative regulatory effects on apoptosis. EAT/mcl-1, an antiapoptotic bcl-2-related gene and immediate early gene, was dramatically expressed at an early stage of NCR-G3 differentiation. Bcl-xL, another antiapoptotic gene, was induced at a middle stage of differentiation and then gradually decreased to basal level. Expression of Bax, a proapoptotic molecule, was detected at a high level and remained relatively constant. Meanwhile, Bcl-2 and Bcl-xS were below detectable levels throughout the various stages of differentiation. As the balance of bcl-2 genes is a crucial regulatory step in apoptosis, the results suggest that EAT and Bax likely regulate apoptosis in the early stages of differentiation. In later stages of differentiation, down-regulation of EAT was found to coincide with a gradual increase in apoptosis of NCR-G3 cells. Furthermore, use of the monoclonal antibody (3A2) specific to EAT revealed that EAT is localized to the outer mitochondrial membrane in human EC cells. In addition, EAT immunoreactivity was not detected in apoptotic NCR-G3 cells while it was observed in nearly all viable cells. The findings suggest that rapid induction of EAT may prevent NCR-G3 cells from undergoing apoptosis, thereby supporting viability at the early stage of differentiation.  相似文献   

18.
《Theriogenology》2008,69(9):1271-1281
This study was undertaken to obtain specific information on the characteristics of spontaneous and induced apoptosis during preimplantation development of rabbit in vivo and in vitro developed embryos and mouse in vitro embryos. After reaching appropriate developmental stages, embryos were transferred into culture media with or without apoptotic inductor (actinomycin D 500 ng/mL) and cultured for 10 h. The identification of apoptotic cells was based on morphological assessment of nuclei and on detection of specific DNA degradation, phosphatidylserine redistribution and active caspase-3 under fluorescence microscope.Our experiments proved that apoptosis is a frequent physiological event occurring during normal preimplantation development. A high number of untreated rabbit and mouse blastocysts contained at least one apoptotic cell. Rabbit embryos showed a lower incidence of spontaneous apoptosis. Treated blastocysts of both species responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and significant increase in the incidence of apoptotic cell death. The occurrence of spontaneous apoptosis during earlier preimplantation development was sporadic and its presence was observed only at stages following embryonic genome activation (at 4-cell stage and later in mouse, at 16-cell and morula stage in rabbit). The susceptibility of embryos at early stages to the apoptotic inductor was much lower. The presence of actinomycin D did not increase the incidence of apoptotic embryos or apoptotic cells. Nevertheless, it slowed down embryo growth and triggered earlier appearance of some apoptotic features (at the 6-cell stage in rabbit). The results show that the occurrence of both spontaneous and induced apoptosis in preimplantation embryos is stage- and species-specific.  相似文献   

19.
In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animal side blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpress  相似文献   

20.
In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or 2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4-and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16-and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8-to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continued development of the injected embryos. These results indicate that cells overexpressed with SAMDC undergo apoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a “fall-safe“ mechanism to eliminate physiologically-severely damaged cells to save the rest of the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号