首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Phosphorylations catalyzed by cAMP-dependent protein kinase are essential for sperm motility, and type II cAMP-dependent protein kinase in mature sperm has been shown to be firmly bound to the flagellum via the regulatory subunit, RII. The present study documents high-levelled expression of a human, testis-specific RII alpha mRNA (2.0 kb) analogous to the rat mRNA which is induced in haploid germ cells [(1988) FEBS Lett. 229, 391-394]. We report the molecular cloning of a full-length human cDNA corresponding to this unique testis mRNA, and the presence of an alternative amino-terminal region (amino acids 45-75) of the predicted RII alpha protein (404 amino acids) compared with the previously published mouse and rat sequences. However, this alternate region is also shown to be present in RII alpha mRNA (7.0 kb) of human somatic cells. Our data indicate the divergent amino-terminal sequence to be due to species differences, suggesting an active evolutionary pressure on this particular region, which could be involved in subcellular attachment of RII alpha and thereby localization of kinase activity to certain targets within the cell.  相似文献   

6.
7.
We have isolated and characterized a cDNA, cFSA-Acr.1, encoding a testis-specific fox sperm antigen. The antigen is located on the inner acrosomal compartment, and is expressed during spermatogenesis on the developing acrosome of round and elongating spermatids. Database searches with the deduced amino acid sequence of cFSA-Acr.1 revealed that the clone has high homology to both human and baboon sperm protein SP-10, and the mouse sperm protein, MSA-63. The region of highest homology is within the carboxyl terminus. In the middle of the open reading frame, the fox sequence shows unique sequences absent from both the human, baboon SP-10, and mouse MSA-63 sequences. In addition to cFSA-Acr.1, two other clones were also isolated from the same fox testis cDNA library, and sequence analysis shows that they may represent alternatively spliced mRNAs coding for other FSA-Acr proteins. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The sperm surface fertilin complex was first described in the guinea pig where it was found as a heterodimer of α and β subunits, both of which were proposed to play a role in sperm-oolemma recognition and plasma membrane fusion during fertilisation. Whilst the β subunit is apparently testis-specific, the finding of low levels of fertilin α in nonreproductive tissues has cast some doubt on a unique role in fertilisation. Moreover, the absence of a functional fertilin α gene in the human would imply that this gene product is not absolutely essential for fertilisation, although it could play a facilitatory role. We now describe the organisation and sequence of the fertilin α genes in a range of primates, including the great apes, and find that the gorilla gene, like that of the human, is non-functional. Mol. Reprod. Dev. 51:92–97, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
CatSperbeta, a novel transmembrane protein in the CatSper channel complex   总被引:2,自引:0,他引:2  
Four CatSper ion channel subunit genes (CatSpers 1-4) are required for sperm cell hyperactivation and male fertility. The four proteins assemble (presumably as a tetramer) to form a sperm-specific, alkalinization-activated Ca(2+)-selective channel. We set out to identify proteins associating with CatSper that might help explain its unique role in spermatozoa. Using a transgenic approach, a CatSper1 complex was purified from mouse testis that contained heat shock protein 70-2, a testis-specific chaperone, and CatSperbeta, a novel protein with two putative transmembrane-spanning domains. Like the CatSper ion channel subunits, CatSperbeta was restricted to testis and localized to the principal piece of the sperm tail. CatSperbeta protein is absent in CatSper1(-/-) sperm, suggesting that it is required for trafficking or formation of a stable channel complex. CatSperbeta is the first identified auxiliary protein to the CatSper channel.  相似文献   

10.
The Spatial gene is expressed in highly polarized cell types, such as epithelial cells in the thymus, neurons in the brain and germ cells in the testis. In this study, we report the characterization and distribution of Spatial proteins during mouse spermatogenesis. Besides Spatial-epsilon and -delta, we show that the newly described short isoform Spatial-beta is expressed specifically in round spermatids. Using indirect immunofluorescence, we detected Spatial in the cytosol of the early round spermatid. By the end stages of round spermatids, Spatial is concentrated at the opposite face of the acrosome near the nascent flagellum and in the manchette during the elongation process. Finally in mature sperm, Spatial persists in the principal piece of the tail. Moreover, we found that Spatial colocalizes with KIF17b, a testis-specific isoform of the brain kinesin-2 motor KIF17. This colocalization is restricted to the manchette and the principal piece of the sperm tail. Further, coimmunoprecipitation experiments of native proteins from testis lysates confirmed Spatial-KIF17b association through the long Spatial-epsilon isoform. Together, these findings imply a function of Spatial in spermatid differentiation as a new cargo of kinesin KIF17b, in a microtubule-dependent mechanism specific to the manchette and the principal piece of the sperm tail.  相似文献   

11.
Mammalian testis contains two forms of cytochrome c, one identical to the form found in somatic tissues and a second that is expressed in a stage-specific manner during spermatogenic differentiation. We have isolated both rat and mouse cDNA clones and the rat gene encoding the testis-specific cytochrome c and determined their DNA sequences. The testicular variant displays a number of notable differences with its somatic counterpart. 1) In contrast to the multipseudogene family derived from mammalian somatic cytochrome c genes, the testis gene is single-copy in genomic DNA with no detectable pseudogenes. 2) The rat testis gene is approximately 7 kilobases (kb) long with three introns totaling nearly 6.5 kb whereas the two introns dividing the 2.1-kb somatic gene occupy only 0.9 kb. Introns differ in position as well as size. 3) The testicular variant has a longer 5'-untranslated leader (230 versus 70 base pairs for the somatic gene) with an upstream open reading frame of 129 base pairs beginning with an AUG in a favorable translational context. 4) A single polyadenylation site in the testicular mRNA (approximately 900 nucleotides) contrasts with the three functionally equivalent sites observed in rat somatic messages. 5) Finally, rat and mouse testis cytochromes c differ at 4 amino acid residues as opposed to the complete sequence identity found in the somatic proteins suggesting a shorter unit evolutionary period for these molecules. These observations are consistent with a duplication of an ancestral cytochrome c gene leading to the emergence of novel structural features and regulatory properties likely associated with the striking tissue specificity of the testicular cytochrome c.  相似文献   

12.
Identification of γ1 subunit of GABAA receptor in rat testis   总被引:1,自引:0,他引:1  
Hu JH  Yan YC 《Cell research》2002,12(1):33-37
  相似文献   

13.
14.
15.
16.
Ran, a Ras-related GTPase, is required for transporting proteins in and out of the nucleus during interphase and for regulating the assembly of microtubules. cDNA cloning shows that rat testis, like mouse testis, expresses both somatic and testis-specific forms of Ran-GTPase. The presence of a homologous testis-specific form of Ran-GTPase in rodents implies that the Ran-GTPase pathway plays a significant role during sperm development. This suggestions is supported by distinct Ran-GTPase immunolocalization sites identified in developing spermatids. Confocal microscopy demonstrates that Ran-GTPase localizes in the nucleus of round spermatids and along the microtubules of the manchette in elongating spermatids. When the manchette disassembles, Ran-GTPase immunoreactivity is visualized in the centrosome region of maturing spermatids. The circumstantial observation that fractionated manchettes, containing copurified centrin-immunoreactive centrosomes, can organize a three-dimensional lattice in the presence of taxol and GTP, points to the role of Ran-GTPase and associated factors in microtubule nucleation as well as the potential nucleating function of spermatid centrosomes undergoing a reduction process. Electron microscopy demonstrates the presence in manchette preparations of spermatid centrosomes, recognized as such by their association with remnants of the implantation fossa, a dense plate observed only at the basal surface of developing spermatid and sperm nuclei. In addition, we have found importin beta1 immunoreactivity in the nucleus of elongating spermatids, a finding that, together with the presence of Ran-GTPase in the nucleus of round spermatids and the manchette, suggest a potential role of Ran-GTPase machinery in nucleocytoplasmic transport. Our expression and localization analysis, correlated with functional observations in other cell systems, suggest that Ran-GTPase may be involved in both nucleocytoplasmic transport and microtubules assembly, two critical events during the development of functional sperm. In addition, the manchette-to-centrosome Ran-GTPase relocation, together with the similar redistribution of various proteins associated to the manchette, suggest the existence of an intramanchette molecular transport mechanism, which may share molecular analogies with intraflagellar transport.  相似文献   

17.
18.
A cDNA for an alternatively spliced variant of the testis-specific catalytic subunit of calmodulin dependent protein phosphatase (CaM-PrP) was cloned from a human testis library. The nucleotide sequence of 2134 base pairs (bp) encodes a protein of 502 amino acids (Mr approximately 57,132) and pI 7.0. The cDNA sequence differs from the murine form of this gene by a 30 bp deletion in the coding region, the position of which matches those in the two other genes for the catalytic subunit. These data indicate that this alternative splicing event arose prior to the divergence of the three genes. The deduced sequence of the human protein is only 88% identical to the homologous murine form, in striking contrast to the other two CaM-PrP catalytic subunits which are highly conserved between mouse and human (approximately 99%); this indicates a more rapid rate of evolution for the testis-specific gene. Analysis of Southern blots containing DNA from human-hamster somatic cell hybrids show that the gene is on human chromosome 8.  相似文献   

19.
Thymosin beta 10 is one of a small family of proteins closely related in sequence to thymosin beta 4, recently identified as an actin-sequestering protein. A single molecular weight species of thymosin beta 10 mRNA is present in a number of rat tissues. In adult rat testis, an additional thymosin beta 10 mRNA of higher molecular weight was identified. Nucleotide sequencing of cDNA clones complementary to the testis-specific thymosin mRNA indicated that this mRNA differed from the ubiquitous thymosin beta 10 mRNA only in its 5'-untranslated region, beginning 14 nucleotides upstream of the translation initiation codon. These results, together with primer extension experiments, suggest that the two thymosin beta 10 mRNAs are transcribed from the same gene through a combination of differential promoter utilization and alternative splicing. The novel thymosin beta 10 mRNA could be detected only in RNA isolated from sexually mature rat testis. Both mRNAs were present in pachytene spermatocytes; only the testis-specific mRNA was detected in postmeiotic haploid spermatids. Immunoblot analysis using specific antibodies showed that the thymosin beta 10 protein synthesized in adult testis was identical in size to that synthesized in brain. Immunohistochemical analysis showed that the protein was present in differentiating spermatids, suggesting that the testis-specific thymosin beta 10 mRNA is translated in haploid male germ cells.  相似文献   

20.
We have previously cloned a cDNA encoding TBP-1, a protein present in the rat spermatid manchette and outer dense fibers of the developing sperm. TBP-1 contains a heptad repeat of six-leucine zipper fingers at the amino terminus and highly conserved ATPase and DNA/RNA helicase motifs toward the carboxyl terminus. TBP-1 is one of the 20 subunits forming the 19S regulatory complex of the 26S proteasome, an ATP-dependent multisubunit protease found in most eukaryotic cells. We now report the isolation of the 26S proteasome from rat testis and sperm tail and its visualization by whole-mount electron microscopy using negative staining. The 26S proteasome from rat testis was fractionated by Sephacryl S-400/Mono-Q chromatography using homogenates suspended in a 10% glycerol-supplemented buffer. Chromatographic fractions were analyzed by immunoblotting using a specific anti-TBP-1 serum. During the purification of Sak57, a keratin filament present in outer dense fibers from epididymal sperm, we detected a substantial amount of 26S proteasomes. Intact 26S proteasomes from rat testis display a rod-shaped particles about 45 nm in length and 11-17 nm in diameter. Each particle consists of a 20S barrel-shaped component formed by four rings (alphabetabetaalpha), capped by two polar 19S regulatory complexes, each identified by an element known as the "Chinese dragon head motif". TBP-1 is an ATPase-containing subunit of the 19S regulatory cap. Rat sperm preparations displayed both dissociated 26S proteasomes and Sak57 filaments. We hypothesize that 26S proteasomes in the perinuclear-arranged manchette are in a suitable location for recognition, sequestration, and degradation of accumulating ubiquitin-conjugated somatic and transient testis-specific histones during spermiogenesis. In the sperm tail, the 26S proteasome may have a role in the remodeling of the outer dense fibers and other tail components during epididymal transit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号