首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of mammalian cells with 1,25-dihydroxyvitamin D3 (1,25D3) produces a G1 to S (G1/S) phase cell cycle block. In addition, it has been noted that a smaller proportion of cells accumulates in the G2/M compartment in 1,25D3-treated cultures. Since cyclins have a major influence on the regulation of cell cycle progression, we determined the expression of cyclins A and B as markers of the G2 phase and of cyclin E as the marker of G1/S transition. No increase in the steady-state levels of cyclin A or cyclin B mRNA was detected in the total cell population or in the cyclin B1 protein in the G2/M cell cycle compartment. In contrast, immunodetectable cyclin E protein was increased in cell cultures as a whole and specifically in the G2/M compartment cells. Determination of BrdU incorporation into DNA by flow cytometry showed marked inhibition of DNA replication in cells with DNA content higher than 4C, and autoradiography of 3H-TdR-pulsed cells showed that polynucleated cells did not replicate DNA after 96 h of treatment with 1,25D3 or analogs. Taken together, these experiments show that at least a portion of the G2/M compartment in 1,25D3-arrested cultures of HL60 cells represents G1 cells at a higher ploidy level, which are blocked from entering the high ploidy S phase. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a potent ligand for the nuclear receptor vitamin D receptor (VDR) and induces myeloid leukemia cell differentiation. The cardiotonic steroid bufalin enhances vitamin D-induced differentiation of leukemia cells and VDR transactivation activity. In this study, we examined the combined effects of 1,25(OH)2D3 and bufalin on differentiation and VDR target gene expression in human leukemia cells. Bufalin in combination with 1,25(OH)2D3 enhanced the expression of VDR target genes, such as CYP24A1 and cathelicidin antimicrobial peptide, and effectively induced differentiation phenotypes. An inhibitor of the Erk mitogen-activated protein (MAP) kinase pathway partially inhibited bufalin induction of VDR target gene expression. 1,25(OH)2D3 treatment induced transient nuclear expression of VDR in HL60 cells. Interestingly, bufalin enhanced 1,25(OH)2D3-induced nuclear VDR expression. The MAP kinase pathway inhibitor increased nuclear VDR expression induced by 1,25(OH)2D3 and did not change that by 1,25(OH)2D3 plus bufalin. A proteasome inhibitor also enhanced 1,25(OH)2D3-induced CYP24A1 expression and nuclear VDR expression. Bufalin-induced nuclear VDR expression was associated with histone acetylation and VDR recruitment to the CYP24A1 promoter in HL60 cells. Thus, the Na+,K+-ATPase inhibitor bufalin modulates VDR function through several mechanisms, including Erk MAP kinase activation and increased nuclear VDR expression.  相似文献   

4.
5.
Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3.  相似文献   

6.
Numerous vitamin D3 analogs (VDAs) can inhibit the proliferation of cells from several types of human malignancies. The physiologically active form of vitamin D3, 1,25-dihydroxyvitamin D3(1,25D3), is formed by successive hydroxylations of cholecalciferol at the 25 and 1α positions. In this study we examined the effects of the absence of the 1α(OH) group, introduction of a double bond in position 16, and further modifications at the 23, 26, and 27 positions in the side chain on the potency of the VDAs. The parameters studied were the rapidity of the induction of monocytic differentiation, the cell cycle traverse, and the effects of VDAs on intracellular calcium homeostasis in HL60 cells. The results show that (1) 1,25D3 derivatives which lack the 1α(OH) group have little differentiation-inducing activity, (2) hexafluorination (6F) of the terminal methyl groups in the side chain partially restores the activity of 1α-desoxy compounds and potentiates the activity of 1α hydroxylated compounds, and (3) 25-(OH)-16,23E-diene-26,27-hexafluoro-vitamin D3 (Ro25-9887) alone among the twelve compounds tested induces differentiation with only minimal changes in the basal levels of intracellular calcium and store-dependent calcium influx in HL60 cells. Addition of 1α(OH) group to this compound increases its differentiation-inducing activity but also elevates basal calcium level. The results suggest that altered calcium homeostasis is not an obligatory component of HL60 leukemia cell differentiation, and that Ro25-9887 and related VDAs may be suitable for testing as components of anti-leukemic therapy. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Development of drug resistance is a major problem in attempts to control the growth of neoplastic cell populations. The resistance can be either inherent or acquired by an exposure to a chemotherapeutic drug. The available models for study of these phenomena have not led to major improvements in the therapy for human cancers. Therefore, in order to develop a new model for such studies, we have exposed human myeloid leukemia cells HL60 to increasing concentrations of 1,25-dihydroxyvitamin D3(1,25D3) and characterized the emerging new phenotypes of these cells over a period of 4 years. During the stepwise development of resistance only cells which did not adhere to the flask walls were passaged. Beginning at 30 nM1,25D3the sublines became resistant to the differentiation-inducing and growth-retarding properties of 1,25D3even at 400 nM.Also, their growth rates in 1,25D3-free media increased. In addition, beginning at 40 nM1,25D3the sublines acquired resistance to 5-β- -arabinocytosine (araC) due to the lack of expression of the deoxycytidine kinase gene. The araC-resistant sublines were also near-tetraploid, as judged by their DNA content. When grown in 1,25D3-free long-term culture the phenotype was essentially stable. The development of cross-resistance to araC during growth in the presence of an unrelated compound (i.e., 1,25D3) shows that in some instances an apparently inherent drug resistance may in fact be due to a metabolic defect resulting from an exposure to another agent.  相似文献   

8.
Macrophage colony stimulating factor (CSF-1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are potent inducers of macrophage differentiation. Both appear to modulate protein phosphorylation, at least in part, through protein kinase C (PKC) raising the question as to whether they concurrently impact on macrophage-like cells. In this regard, we utilized the CSF-1 dependent murine macrophage-like line BAC 1.25F5. CSF-1 treatment of these cells for 30 min leads to particular phosphorylation of a 165 kDa protein, the putative CSF-1 receptor, and a 210 kDa moiety. 1,25(OH)2D3 exposure for 24 h prior to addition of CSF-1 enhances phosphorylation of the 165 kDa species and, especially, the 210 kDa protein. Phosphorylation of the latter protein is 1,25(OH)2D3 dose- and time-dependent and the molecule is specifically immunoprecipitated with a rabbit polyclonal anti-talin antibody. Experiments with okadaic acid show that the enhanced phosphorylation of talin does not result from serine phosphatase inhibition. CSF-1 and 1,25(OH)2D3, alone or in combination, do not increase talin protein expression. The tyrosine kinase inhibitor, genestein, blocks 1,25(OH)2D3/CSF-1 induced phosphorylation of the putative CSF-1 receptor but has no effect on talin phosphorylation which occurs exclusively on serine. In contrast to genestein, staurosporin, an inhibitor of PKC, inhibits phosphorylation of talin. Moreover, exposure of 1,25(OH)2D3 pretreated cells to phorbol 12-myristate 13-acetate (PMA) in place of CSF-1 also prompts talin phosphorylation. Finally, 1,25(OH)2D3 enhances 3[H]PDBu binding, indicating that the steroid increases PMA receptor capacity. Thus, CSF-1 and 1,25(OH)2D3 act synergistically via PKC to phosphorylate talin, a cytoskeletal-associated protein.  相似文献   

9.
WEHI-3B D cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARα and RXRα, was measured. No VDR was detected in untreated WEHI-3B D cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARα and RXRα were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1,25-(OH)2D3.  相似文献   

10.
The physiologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3), induces promyelocytic HL60 cells to differentiate towards monocyte-like cells. During this differentiation increased cytosolic calcium (Cai2+) and expression of surface receptors for chemotactic factors “prime” the cell for the activation of monocyte functions and the triggering of the respiratory burst pathway. We examined whether the Ca2+ influx mediated by store-operated channels (SOC) contributed to the increased Cai2+ following exposure of HL60 cells to 10−7 M 1,25D3. Cells treated with 1,25D3 for 72 hr demonstrated a rapid transient rise in Cai2+ followed by a second, phasic, increase in Cai2+ in response to the purinergic agonist ATP. This second Cai2+ transient was blocked by Ni2+, SKF 96365, or withdrawal of extracellular Ca2++. In cells suspended in Ca2+-free medium, peak changes (Δ) in [Ca2+]i elicited by ATP-induced Ca2+ mobilization occurred with similar EC50 values in differentiated and vehicle (EtOH)-treated cells; however, peak [Ca2+]i was reduced by 55% in 1,25D3-treated cells. Decreased Ca2+ mobilization was associated with a 25–35% reduction in intracellular Ca2+ stores (determined with ionomycin). 1,25D3-treated cells exposed to ATP or thapsigargin (Tg) in Ca2+-free medium for 3 min with subsequent addition of 1 mM Ca2+ exhibited a respective 80% or 120% stimulation in peak [Ca2+]i compared to EtOH-treated cells. Enhanced Ca2+ influx mediated by SOC was also seen in these cells as an increase in the rate of Mn2+ entry after exposure to ATP or Tg. At 96 hr after addition of 1,25D3, when differentiated phenotype was established, basal Ca2+i and Ca2+ entry mediated by SOC returned to control values, but Ca2+ store size remained reduced. Up-regulation of Ca2+ influx via the SOC pathway during 1,25D3-induced differentiation may contribute to the functional properties of the maturing monocyte, or to the resetting of molecular programs responsible for the changing phenotype. J. Cell. Physiol. 172:284–295, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Recent clinical trials aimed at improved treatment of AML by administration of vitamin D derivatives showed unremarkable results, suggesting development of vitamin D resistance in patients'' AML blasts. Since mechanisms of vitamin D resistance are not clear, we studied 40AF cells, a subline of HL60 cells that can proliferate in the presence of 1α,25-dihydroxyvitamin D3 (1,25D). We found that mRNA and protein levels of HPK1, an upstream MAP4 kinase, are dramatically increased in 40AF cells, and HPK1 protein is further increased when the 1,25D resistance of 40AF cells is partially reversed by the addition of carnosic acid and p38 MAPK inhibitor SB202190 (DCS cocktail). Knockdown of HPK1 reduces 1,25D/DCS-induced differentiation of both 1,25D-sensitive HL60 and U937 cells and 1,25D-resistant 40AF cells, but the effect of HPK1 knockdown on differentiation-associated G1 arrest is more apparent in the resistant than the sensitive cells. To explain why 40AF and the intrinsically vitamin D-resistant KG-1a cells can proliferate in the presence of vitamin D, we found that the cleaved HPK1 fragment (HPK1-C) level is high in 40AF and KG-1a cells, but when differentiation is induced by DCS, HPK1-C decreases, while full-length (FL)-HPK1 increases. Accordingly, inhibition of proteolysis with the pan-caspase inhibitor Q-VD-OPh reduced HPK1 cleavage and enhanced DCS-induced differentiation of 40AF cells. The results indicate that FL-HPK1 is a positive regulator of vitamin D-induced differentiation in AML cells, but the cleaved HPK1 fragment inhibits differentiation. Thus, high HPK1 cleavage activity contributes to vitamin D resistance, and HPK1 has a dual role in AML cell differentiation.Key words: HPK1, vitamin D, AML differentiation, cell cycle arrest, differentiation resistance, caspase inhibition, signaling pathways  相似文献   

12.
Serum and post-microsomal supernatants of human lymphocyte, erythrocyte, skeletal muscle and parathyroid adenoma homogenates were examined for specific binding of 25-hydroxycholecalciferol (25-OHD3) and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3). Muscle, lymphocytes and parathyroid adenomata extracts contained a 6-S 25-OHD3-binding protein which was not found in erythrocyte extracts, and which was distinct from the smaller serum transport α-globulin. A cathodal, 1,25-(OH)2D3-binding protein, which sedimented at 3–4 S was also detected in parathyroid tissue. These observations suggest the possibility of direct physiologic interaction between vitamin D metabolites and nucleated human tissues other than intestine and bone.  相似文献   

13.
14.
15.
16.
Analogs of vitamin D have been synthesized which have reduced calcemic activities yet increased anti-proliferative and differentiation-inducing properties, raising expectations that they will be useful for treatment of human neoplastic diseases. In the present study we compared the abilities of three such analogs, 24a, 24b-dihomo-1,25-dihydroxyvitamin D3 (PRI-1890), 24-ene-1,25-dihydroxyvitamin D2(PRI-1906) and (24R)-1,24-dihydroxy-vitamin D3 (PRI-2191) to induce markers (CD14, CD11b and MSE) of differentiation, G1 phase block, and associated molecular events in human promyeloblastic leukemia cells HL60. We found that the potencies of the analogs to induce differentiation paralleled their activation of Erk, JNK and p38 mitogen-activated protein kinase (MAPK) pathways, and the anti-proliferative activity closely correlated with the extent of hypophosphorylation of retinoblastoma protein (pRb). Interestingly, low concentrations of derivatives of vitamin D, which were insufficient to induce any detectable changes in the cell cycle traverse, markedly increased the levels of total pRb, which was highly phosphorylated. These results suggest that pRb may have an unsuspected role in monocytic differentiation, perhaps to increase the sensitivity of the G1 checkpoint, by increasing the amount of substrate for cyclin-dependent kinases.  相似文献   

17.
The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.  相似文献   

18.
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells.Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P < 0.05). Reduction in 1,25D3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号