首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of tissue/cell DNA adducts represents a suitable monitor of carcinogen exposure because the majority of chemical mutagens/carcinogens react with DNA, forming covalent adducts, a key event in the initiation of chemical carcinogenesis. Investigations of DNA-adduct formation in vivo in white blood cells (WBC) versus target tissues, i.e. internal organs for most carcinogens, is expected to yield useful information about the suitability of WBC for biomonitoring and risk assessment. For this purpose, female ICR mice were given 0.4 mmole/kg benzo[a]pyrene (BP), 0.045 mmole/kg dibenzo[c,g]carbazole (DBC) or 2.47 mmole/kg safrole by oral gavage or 4 daily doses (equivalent to 3 cigarettes) of cigarette-smoke condensate (CSC) by topical application. At 24 h after dosing, DNA adducts were detected by a nuclease P1-enhanced 32P-postlabeling assay [M.V. Reddy and K. Randerath, Carcinogenesis, 7 (1986) 1543] in WBC and internal tissues treated with individual carcinogens, while CSC treatment elicited aromatic adducts in most tissues but not in WBC. Adduct patterns of WBC DNA were qualitatively similar to those of internal organs, but adduct amounts varied. BP, a systemic carcinogen, bound nearly as much to WBC DNA as to target-tissue DNA samples; whereas the liver carcinogens, DBC and safrole, bound to WBC DNA considerably less (22- and 51-fold, respectively) compared with liver DNA. The number of adducts in 10(7) nucleotides of WBC, liver, lung, kidney and spleen DNA, respectively, were: 2, 5, 3, 2 and 3 with BP; 6, 131, 6, 14 and 4 with DBC; 5, 238, 3, 5 and 0.6 with safrole. For CSC, these values were 0, 1 and 0.02 in WBC, lung and spleen, respectively. Our results show that carcinogen binding to WBC DNA does not reflect binding to target-tissue DNA in a quantitative sense for the carcinogens studied except for BP, and that WBC are not suitable surrogates for monitoring CSC exposure by DNA-adduct measurement after topical application. The CSC data in mice was consistent with the previous findings in humans that smokers' tissues but not WBC show smoking-related bulky/aromatic DNA adducts, as measured by 32P-postlabeling.  相似文献   

2.
Lipid peroxidation directly reacts with DNA and produces various exocyclic etheno-base DNA adducts, some of which are considered to contribute to carcinogenesis. However, the system for repairing them in humans is largely unknown. We hypothesized that etheno-DNA adducts are repaired by base excision repair initiated by DNA glycosylase. To test this hypothesis, we examined the activities of the DNA glycosylase proteins OGG1, SMUG1, TDG, NEIL1, MUTYH, NTH1, MPG, and UNG2 against double-stranded oligonucleotides containing 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC), butanone-ethenocytosine (BεC), butanone-ethenoguanine (BεG), heptanone-ethenocytosine (HεC), or heptanone-ethenoguanine (HεG) using a DNA cleavage assay. We found that TDG is capable of removing thymine that has mispaired with εC, BεC, BεG, HεC, or HεG in vitro. We next examined the effect of TDG against etheno-DNA adducts in human cells. TDG-knockdown cells exhibited the following characteristics: (a) higher resistance to cell death caused by the induction of etheno-DNA adducts; (b) lower repair activity for εC; and (c) a modest acceleration of mutations caused by εC, compared with the rate in control cells. All these characteristics suggest that TDG exerts a repair activity against etheno-DNA adducts in human cells. These results suggest that TDG has novel repair activities toward etheno-DNA adducts.  相似文献   

3.
The in vitro micronucleus (MN) test is widely used for screening genotoxic compounds, but it often produces false-positive results. To consider the significance of positive results, it is important to know whether DNA adducts are formed in the cells treated with the test compound. Recently, Matsuda et al. developed the DNA adductome approach to detect DNA adducts comprehensively ([4] Kanaly, et al., Antioxid. Redox Signal., 2006, 8, 993-1001). We applied this method to assess the DNA-damaging capability of in vitro MN test-positive compounds. CHL/IU cells were treated with compounds from three categories: (1) carcinogens causing DNA alkylation, ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine; (2) carcinogens producing DNA bulky adducts, 2-amino-6-phenyl-1-methylimidazo[4,5-b]pyrene, benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, and 4-nitroquinoline-1-oxide, and (3) non-carcinogens, caffeine, maltol, and sodium chloride, with or without metabolic activation. With the conditions in which all test compounds gave positive results in the MN tests, DNA was extracted from the cells and hydrolyzed to deoxyribonucleosides, which were subsequently subjected to LC/ESI-MS/MS analysis. All carcinogens (categories 1 and 2) produced various DNA adduct peaks, and some of the m/z peak values corresponded to known adducts. No non-carcinogens produced DNA adducts, indicating that these compounds produced MN through different mechanisms from the adduct formation. These results indicate that the adductome approach is useful to demonstrate DNA damage formation of MN test-positive compounds and to understand their mechanisms of action.  相似文献   

4.
We have established a specific correlation between the carcinogenic potency of a series of alkylating agents, with a mechanism of reaction ranging between Ingold's SN1-SN2 (ENU greater than MNU = MNNG greater than EMS greater than DMS = MMS) (Vogel et al., 1979; Bartsch et al., 1983) and specific target sites in the amino acids of nuclear proteins of cultured hepatocytes. More potent carcinogens, that react predominantly with an Ingold's SN1 mechanism, mainly alkylate the amino group of lysine and the guanido group of arginine. Weaker carcinogens, reacting with a mechanism closely resembling an Ingold's SN2, mainly alkylate the sulfhydryl group of the cysteine and the 3 position of the imidazolic ring of histidine. A compound with an intermediate type of reactivity alkylates, to a comparable extent, all 4 of the above-described positions. Although stable DNA damage brought about by alkylating carcinogens is considered to be the most likely cause of neoplastic transformation, epigenetic modifications may also play an important role in the process, especially because of their extreme stability. We have verified the existence of a linear correlation between the Swain-Scott substrate constant (S) of each compound and the amount of alkylation produced at the specific target sites. This type of correlation could be the basis of a 'short-term' genotoxicity assay in a battery of complementary tests.  相似文献   

5.
Abstract

Etheno–DNA adducts are generated from exogenous carcinogens such as vinyl chloride and urethane and also from endogenous lipid peroxidation products such as trans-4-hydroxy-2-nonenal (HNE). The present authors and others have established that 1,N6-ethenodeoxyadenosine (εdA) and 3,N4-ethenodeoxycytidine (εdC) are present in human urine and could be explored as biomarkers for monitoring whole-body oxidative stress. The present study reports on a new ultrasensitive 32P-postlabelling/thin-layer chromatography (TLC) method for the analysis of εdC as deoxynucleoside in human urine. The urine samples were purified and enriched on a solid-phase silica C-18 column followed by a semi-preparative reverse-phase high-performance liquid chromatography. The purified sample was labelled with a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster (Dm-dNK) in the presence of 5′-bromo-2′-deoxyuridine (BrdU) as internal standard. The absolute sensitivity of the method was 0.1 fmol εdC detectable in 500 µl of human urine. The analysis of human urine samples from 15 healthy volunteers revealed a mean εdC level of 2.49±1.76 (SD) fmol µmol?1 creatinine (range 0.66–6.42). By this non-invasive method, εdC in human urine could be explored as a biomarker for oxidative stress-related human diseases.  相似文献   

6.
cDNA segments copied from the RNA of foot-and-mouth disease virus (FMDV) C1-Santa Pau (isolate C-S8) have been cloned in plasmid pBR322. A 998-bp DNA fragment, that includes the region coding for capsid protein VP1, the carboxy terminus of VP3, and the amino terminus of precursor protein p52 has been sequenced. Comparison of the nucleotide sequence with those from FMDV O1K, A1061, a12 and C3 Indaial (Kurz et al., Nucl. Acids Res. 9 (1981) 1919–1931; Kleid et al., Science 214 (1981) 1125–1129; Boothroyd et al., Gene 17 (1982) 153–161; Makoff et al., Nucl. Acids Res. 10 (1982) 8285–8295) indicates extensive variability between the corresponding gene segments, including short insertions and deletions. Base transversions are more frequent than transitions within the VP1 coding segment, but not in the sequence coding for the amino-terminal end of p52. The nucleotide sequence divergence is reflected in variability in both the primary and the predicted higher-order structures of the encoded VP1s.  相似文献   

7.
《Gene》1988,69(2):237-244
A 1.7-kb EcoRI fragment containing the structural gene for α-lytic protease has been cloned from Lysobacter enzymogenes 495 chromosomal DNA: the first example of a gene cloned from this organism. The protein sequence deduced from the nucleotide sequence encoding this serine protease matches the published amino acid sequence [Olson et al., Nature 228 (1970) 438–442] precisely. Sequence analysis and S 1 mapping indicate that, like subtilisin [e.g. Wells et al., Nucleic Acids Res. 11 (1983) 7911–7925] α-lytic protease is synthesized as a pre-pro protein (41 kDa) that is subsequently processed to its mature extracellular form (20 kDa). This first finding of a large N-terminal protease precursor in a Gram-negative bacterial protease strengthens the hypothesis that large precursors may be a general property of extracellular bacterial proteases, and suggests that the N- or C-terminal location of the precursor segment may be significant.  相似文献   

8.
O6-Methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the pre-mutagenic, pre-carcinogenic and pre-toxic DNA damage O6-methylguanine. It also repairs larger adducts on the O6-position of guanine, such as O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine and O6-chloroethylguanine. These adducts are formed in response to alkylating environmental pollutants, tobacco-specific carcinogens and methylating (procarbazine, dacarbazine, streptozotocine, and temozolomide) as well as chloroethylating (lomustine, nimustine, carmustine, and fotemustine) anticancer drugs. MGMT is therefore a key node in the defense against commonly found carcinogens, and a marker of resistance of normal and cancer cells exposed to alkylating therapeutics. MGMT also likely protects against therapy-related tumor formation caused by these highly mutagenic drugs. Since the amount of MGMT determines the level of repair of toxic DNA alkylation adducts, the MGMT expression level provides important information as to cancer susceptibility and the success of therapy. In this article, we describe the methods employed for detecting MGMT and review the literature with special focus on MGMT activity in normal and neoplastic tissues. The available data show that the expression of MGMT varies greatly in normal tissues and in some cases this has been related to cancer predisposition. MGMT silencing in tumors is mainly regulated epigenetically and in brain tumors this correlates with a better therapeutic response. Conversely, up-regulation of MGMT during cancer treatment limits the therapeutic response. In malignant melanoma, MGMT is not related to the therapeutic response, which is due to other mechanisms of inherent drug resistance. For most cancers, studies that relate MGMT activity to therapeutic outcome following O6-alkylating drugs are still lacking.  相似文献   

9.
The presence of unrepaired lesions in DNA represents a challenge for replication. Most, but not all, DNA lesions block the replicative DNA polymerases. The conceptually simplest procedure to bypass lesions during DNA replication is translesion synthesis (TLS), whereby the replicative polymerase is transiently replaced by a specialized DNA polymerase that synthesizes a short patch of DNA across the site of damage. This process is inherently error prone and is the main source of point mutations. The diversity of existing DNA lesions and the biochemical properties of Escherichia coli DNA polymerases will be presented. Our main goal is to deliver an integrated view of TLS pathways involving the multiple switches between replicative and specialized DNA polymerases and their interaction with key accessory factors. Finally, a brief glance at how other bacteria deal with TLS and mutagenesis is presented.Within the context of this review, we will limit the notion of DNA lesions to chemically altered bases, although the sugar-phosphodiester backbone is also subject to various types of chemical attack leading, for example, to single-strand breaks. Lesions may be spontaneous (e.g., depurinations), induced endogenously (e.g., by reactive oxygen species), induced by radiations (UV light, X rays) or by chemicals. Treatments that induce DNA lesions cause mutations and cancer and are therefore referred to as mutagens or carcinogens. Carcinogens fall into large chemical families of compounds such as aromatic amides, polycyclic hydrocarbons, and nitrosamines. Carcinogens are not necessarily synthetic; for example, some are natural plant metabolites (e.g., Aflatoxin B1, aristolochic acid, etc.). In addition, some drugs used in cancer chemotherapy such as platinum derivatives form covalent DNA adducts and as such are also carcinogens. Drugs from the thiopurine family, such as azathioprine widely used as immunosuppressants in organ transplant patients, form DNA adducts upon interaction with sunlight and promote skin cancer (Zhang et al. 2007).  相似文献   

10.
Doxorubicin, a widely used anthracycline anticancer agent, acts as a topoisomerase II poison but can also form formaldehyde-mediated DNA adducts. This has led to the development of doxorubicin derivatives such as doxoform, which can readily form adducts with DNA. This work aimed to determine which DNA repair pathways are involved in the recognition and possible repair of anthracycline-DNA adducts. Cell lines lacking functional proteins involved in each of the five main repair pathways, mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end-joining (NHEJ) were examined for sensitivity to various anthracycline adduct-forming treatments. The treatments used were doxorubicin, barminomycin (a model adduct-forming anthracycline) and doxoform (a doxorubicin-formaldehyde conjugate). Cells with deficiencies in MMR, BER and NHEJ were equally sensitive to adduct-forming treatments compared to wild type cells and therefore these pathways are unlikely to play a role in the repair of these adducts. Some cells with deficiencies in the NER pathway (specifically, those lacking functional XPB, XPD and XPG), displayed tolerance to adducts induced by both barminomycin and doxoform and also exhibited a decreased level of apoptosis in response to adduct-forming treatments. Conversely, two HR deficient cell lines were shown to be more sensitive to barminomycin and doxoform than HR proficient cells, indicating that this pathway is also involved in the repair response to anthracycline-DNA adducts. These results suggest an unusual damage response pathway to anthracycline adducts involving both NER and HR that could be used to optimise cancer therapy for tumours with either high levels of NER or defective HR. Tumours with either of these characteristics would be predicted to respond particularly well to anthracycline-DNA adduct-forming treatments.  相似文献   

11.
The availability of antibodies recognising specific carcinogen-induced alkylated DNA adducts has contributed, and will continue to contribute, to the study of the biological significance of these adducts with respect to their toxic, mutagenic and carcinogenic properties. Whilst the antibodies have undoubtedly facilitated the study of such mechanistic aspects in animal and cell-culture systems, their availability has also had a crucial and central role in the area of quantitating human exposure to environmental alkylating agents. This latter field of research was initially established and developed as a result of the availability of suitable antibodies. This review will only briefly cover the range of adducts for which antibodies and immunoassays are available, indicating some of the relevant properties of the applied techniques, and will focus on the areas of research which can be furthered specifically by these immunoanalytical tools. Previous extensive reviews of antibodies to carcinogen-DNA adducts are available (Muller and Rajewsky, 1981; Poirier, 1981; Strickland and Boyle, 1984; Kriek et al., 1984).  相似文献   

12.
Zhao C  Tyndyk M  Eide I  Hemminki K 《Mutation research》1999,424(1-2):117-125
Detection of 7-alkylguanine DNA adducts is useful to assess human exposure to and the resulting DNA damage caused by simple alkylating agents. The background 7-methylguanine (7-MG) and 7-hydroxyethylguanine (7-HEG) adduct levels were determined in human and rat tissues, using thin-layer chromatography (TLC) combined with high pressure liquid chromatography (HPLC). In addition, these two adduct levels were also compared in various tissues between smokers and non-smokers. The results demonstrated that the background level of 7-alkylguanine adducts in WBC and lung tissues of non-smokers was 2.9 and 4.0 adducts/107 nucleotides, respectively. In smokers with lung cancers 7-MG adduct level in lung samples (6.3+/-1.9 adducts/107 nucleotides) and in bronchus samples (6.1+/-1.5 adducts/107 nucleotides) was significantly higher than that in WBC samples (3.3+/-0.9 adducts/107 nucleotides). 7-HEG adduct levels obtained from the same individuals were 0.8+/-0.3 in lung, 1.0+/-0.8 in bronchus and 0.6+/-0.2 adducts/107 nucleotides in WBC, respectively. Animal studies showed that background levels of 7-MG (2.1-2.5 adducts/107 nucleotides) in control rats were approximately 2-4-fold higher than 7-HEG levels (0.6-0.9 adducts/107 nucleotides). After a 3-day exposure to 300 ppm ethene, 7-HEG adducts accumulated to a similar extent in different tissues of rats, with the mean adduct level of 5.6-7.0 in liver, 7.4 in lymphocytes and 5.5 adducts/107 nucleotides in kidney.  相似文献   

13.
Sulfur mustard (SM) is an old chemical warfare agent causing blisters (vesicant). Skin toxicity is thought to be partly caused by SM induced DNA damage. SM and the hemi mustard 2-chloroethyl ethyl sulfide (CEES) are bi- and monofunctional DNA alkylating agents, respectively. Both chemicals react especially with N7 guanine. The most abundant adducts are 7-hydroxyethylthioethylguanine for SM (61%) and 7-ethyl thioethylguanine for CEES. Thus, DNA alkylation should serve as a biomarker of SM exposure. A specific monoclonal antibody (2F8) was previously developed to detect SM and CEES adducts at N7 position by means of immunoslotblot (ISB) technique (van der Schans et al. (2004) [16]). Nitrogen mustards (HN-1, HN-2, HN-3) are alkylating agents with structural similarities, which can form DNA adducts with N7 guanine. The aim of the presented work was to modify the van der Schans protocol for use in a field laboratory and to test the cross reactivity of the 2F8 antibody against nitrogen mustards. Briefly, human keratinocytes were exposed to SM and CEES (0–300 μM, 60 min) or HN-1, HN-2, HN-3 (120 min). After exposure, cells were scraped and DNA was isolated and normalized. 1 μg DNA was transferred to a nitrocellulose membrane using a slotblot technique. After incubation with 2F8 antibody, the DNA adducts were visualized with chromogen staining (3,3′-diaminobenzidine (DAB), SeramunGrün). Blots were photographed and signal intensity was quantified. In general, DAB was superior to SeramunGrün stain. A staining was seen from 30 nM to 300 μM of SM or CEES, respectively. However, statistically significant DNA adducts were detected after CEES and SM exposure above 30 μM which is below the vesicant threshold. No signal was observed after HN-1, HN-2, HN-3 exposure. The total hands-on time to complete the assay was about 36 h. Further studies are necessary to validate SM or CEES exposure in blister roofs of exposed patients.  相似文献   

14.
《Gene》1996,171(2):309-310
A clone containing the H1 histamine receptor (H1HR)-encoding gene was isolated from a human genomic DNA library. The 5′-UTR of the H1HR gene reported here differs upstream from bp −142 from that reported previously [Fukui et al., Biochem. Biophys. Res. Comm. 201 (1994) 894–901]. PCR amplification utilizing primer pairs derived from the 5′-UTR reported herein amplified a DNA fragment of the expected size from human genomic DNA whereas 5′-UTR primers derived from the Fukui et al. sequence did not yield a PCR product. The 5′-UTR of H1HR contains potential TATA and CCAAT boxes, a CACCC sequence, potential GREs and other DNA-binding motifs.  相似文献   

15.
To allow more sensitive, selective, and routine analyses of platinum(Pt)-GG and -AG intrastrand cross-links we have significantly improved our quantitative (32)P-postlabeling assay (M. J. P. Welters et al. Carcinogenesis 18, 1767-1774, 1997). Instead of off-line scintillation counting we introduced an on-line flow radioisotope detector into the HPLC system. Furthermore, the isolation protocol for the adducts was significantly modified and optimized to reduce interfering background peaks that prevented quantification of low levels of the cisplatin-DNA adducts in white blood cells obtained from patients. Reduction of background signals was obtained by boiling the samples, followed by phenol/chloroform/isoamylethanol extraction after the DNA digestion step. The labeling efficiency for the adducts was increased by 40% by using Na-formate instead of NH(4)-formate for elution of the adducts from the strong cation-exchange columns. Finally, a calibration curve and quality controls were implemented. The labeling efficiencies were not different between the dinucleotides. The between- and within-run precision for the Pt-GG and Pt-AG adducts measured at the lower limit of quantification of 87 and 53 amol/microg DNA, respectively, was less than 20% CV. The adducts were stable in DNA stored for a 2-month time period at -80 degrees C. The assay is now routinely used for high-precision analyses of patient and cell line samples containing very low adduct levels.  相似文献   

16.
The nonsteroidal antiestrogen tamoxifen increases the risk of endometrial cancer; however, the mechanism for the induction of these tumors is not known. Recently, Sharma et al. [Biochem. Biophys. Res. Commun. 307 (2003) 157], using high performance liquid chromatography (HPLC) with online postcolumn photochemical activation and fluorescence detection, reported the presence of (E)-alpha-(deoxyguanosin- N2-yl)tamoxifen in DNA from human endometrial explants incubated with tamoxifen. Inasmuch as the methodology used by these investigators does not allow unambiguous characterization of tamoxifen-DNA adducts, we have used two additional techniques (HPLC coupled with electrospray ionization tandem mass spectrometry and 32P-postlabeling analyses) to assay for the presence of tamoxifen-DNA adducts in the human endometrial explant DNA. Tamoxifen-DNA adducts were not detected by either method.  相似文献   

17.
Abstract

Thermodynamic parameters for duplex formation were determined from CD melting curves for r(GGACGAGUCC)2 and d(GGACGAGTCC)2, both of which form two consecutive ‘sheared’ A:G base pairs at the center [Katahira et al. (1993) Nucleic Acids Res. 21, 5418–5424; Katahira et al., (1994) Nucleic Acids Res. 22, 2752–27591. The parameters were determined also for r(GGACUAGUCC)2 and d(GGACTAGTCC)2, where the A:G mismatches are replaced by Watson-Crick A:U(T) base pairs. Thermodynamic properties for duplex formation are compared between the sheared and the Watson-Crick base pairs, and between RNA and DNA. Difference in the thermodynamic stability is analyzed and discussed in terms of enthalpy and entropy changes. The characteristic features in CD spectra of RNA and DNA containing the sheared A:G base pairs are also reported.

  相似文献   

18.
19.
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.  相似文献   

20.
The proportions of individual benzo[a]pyrene (BaP)-DNA adducts present in rodent embryo cell cultures change with the length of time of exposure to BaP; the major alteration is an increase in the proportion of (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BaPDE)-deoxyguanosine (dG) adduct (Sebti et al., Cancer Res., 45 (1984) 1594-1600). To determine if this change in the BaP-DNA adducts could result from the induction of enzymes involved in oxidation of BaP, hamster embryo cell cultures were exposed to acetone or BaP for 24 h and then the medium was replaced with fresh medium containing [3H]BaP. After 5 h the BaP-pretreated cells had a 30% higher level of binding of BaP to DNA and formed a greater proportion of (+)-anti-BaPE-dG adduct than the acetone-pretreated control group. Cells pretreated for 24 h with BaP and then exposed to [3H]BaP and Actinomycin D for 5 h had a lower level of binding of BaP to DNA and a lower amount of (+)-anti-BaPDE-deoxyguanosine adduct than cells pretreated with acetone and exposed to [3H]BaP for 5 h. In contrast, pretreatment for 24 h with BaP plus Actinomycin D followed by a 5-h exposure to [3H]BaP resulted in a decrease in overall binding of BaP to DNA but had no effect on the amount of (+)-anti-BaPDE-deoxyguanosine adduct. Actinomycin D treatment had no significant effect on either the total amount of BaP metabolized, the formation of primary and water-soluble BaP metabolites, or cell viability, but reduced [3H]uridine incorporation into RNA by more than 65% at all times. These results suggest that induction of specific isozymes of cytochrome P-450 may be involved in the time-dependent increase in the proportion of (+)-anti-BaPDE-DNA adducts in BaP-treated cells. The state of induction of specific isozymes of cytochrome P-450 and the ability of the BaP dose applied to induce them may be major factors in determining the proportion of BaP metabolized to (+)-anti-BaPDE, the most carcinogenic stereoisomer of BaPDE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号