首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number of odorants [8-11]. OSNs also exhibit odor-evoked responses with complex temporal dynamics [11], but the contribution of this activity to behavioral odor discrimination has received little attention [12]. Here, we investigated the importance of spatial encoding in the relatively simple Drosophila antennal lobe. We show that Drosophila can learn to discriminate between two odorants with one functional class of Or83b-expressing OSNs. Furthermore, these flies encode one odorant from a mixture and cross-adapt to odorants that activate the relevant OSN class, demonstrating that they discriminate odorants by using the same OSNs. Lastly, flies with a single class of Or83b-expressing OSNs recognize a specific odorant across a range of concentration, indicating that they encode odorant identity. Therefore, flies can distinguish odorants without discrete spatial codes in the antennal lobe, implying an important role for odorant-evoked temporal dynamics in behavioral odorant discrimination.  相似文献   

2.
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.  相似文献   

3.
Brains have to decide whether and how to respond to detected stimuli based on complex sensory input. The vinegar fly Drosophila melanogaster evaluates food sources based on olfactory cues. Here, we performed a behavioral screen using the vinegar fly and established the innate valence of 110 odorants. Our analysis of neuronal activation patterns evoked by attractive and aversive odorants suggests that even though the identity of odorants is coded by the set of activated receptors, the main representation of odorant valence is formed at the output level of the antennal lobe. The topographic clustering within the antennal lobe of valence-specific output neurons resembles a corresponding domain in the olfactory bulb of mice. The basal anatomical structure of the olfactory circuit between insects and vertebrates is known to be similar; our study suggests that the representation of odorant valence is as well.  相似文献   

4.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

5.
When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits.  相似文献   

6.
Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.  相似文献   

7.
Local interneurons (LNs) play important roles in shaping and modulating the activity of output neurons in primary olfactory centers. Here, we studied the morphological characteristics, odor responses, and neurotransmitter content of LNs in the antennal lobe (AL, the insect primary olfactory center) of the moth Manduca sexta. We found that most LNs are broadly tuned, with all LNs responding to at least one odorant. 70% of the odorants evoked a response, and 22% of the neurons responded to all the odorants tested. Some LNs showed excitatory (35%) or inhibitory (33%) responses only, while 33% of the neurons showed both excitatory and inhibitory responses, depending on the odorant. LNs that only showed inhibitory responses were the most responsive, with 78% of the odorants evoking a response. Neurons were morphologically diverse, with most LNs innervating almost all glomeruli and others innervating restricted portions of the AL. 61 and 39% of LNs were identified as GABA-immunoreactive (GABA-ir) and non-GABA-ir, respectively. We found no correlations between odor responses and GABA-ir, neither between morphology and GABA-ir. These results show that, as observed in other insects, LNs are diverse, which likely determines the complexity of the inhibitory network that regulates AL output.  相似文献   

8.
The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic. The aqueous solubility of hydrophobic odorants is thought to be greatly enhanced via odorant binding proteins (OBP) which exist in the extracellular fluid surrounding the odorant receptors. We have isolated and partially sequenced 14 candidate OBPs from six insect (moth) species. All 14 represent a single homologous family based on conserved sequence domains. The 14 proteins can be divided into three subfamilies based on differences in tissue specific expression and similarities in amino acid sequences. All 14 proteins are specifically expressed in antennal olfactory tissue. Subfamily I represents previously described pheromone binding proteins (PBP), which are male-specific, associate with pheromone-sensitive neurons, and are highly variable in their sequences when compared among species. Subfamilies II and III are expressed in both male and female antennae, appear to associate with general-odorant-sensitive neurons, and are highly conserved when compared among species. The properties of the subfamily II and III proteins suggest these are general-odorant binding proteins (GOBP). The properties of the respective insect OBP subfamilies suggest that they have different odorant binding specificities. The association of different insect OBP subfamilies with distinct classes of olfactory neurons having different odorant specificities suggests that OBPs can act as selective signal filters, peripheral to the actual receptor proteins.  相似文献   

9.
The responses to odor stimulation of 40 single units in the olfactory mucosa and of 18 units in the olfactory bulb of the tortoise (Gopherus polyphemus) were recorded with indium-filled, Pt-black-tipped microelectrodes. The test battery consisted of 27 odorants which were proved effective by recording from small bundles of olfactory nerve. Two concentrations of each odorant were employed. These values were adjusted for response magnitudes equal to those for amyl acetate at –2.5 and –3.5 log concentration in olfactory twig recording. Varying concentrations were generated by an injection-type olfactometer. The mucosal responses were exclusively facilitory with a peak frequency of 16 impulses/sec. 19 mucosal units responded to at least one odorant and each unit was sensitive to a limited number of odorants (1–15). The sensitivity pattern of each unit was highly individual, with no clear-cut types, either chemical or qualitative, emerging. Of the 18 olfactory bulb units sampled, all responded to at least one odorant. The maximum frequency observed during a response was 39 impulses/sec. The bulbar neurons can be classified into two types. There are neurons that respond exclusively with facilitation and others that respond with facilitation to some odorants and with inhibition to others. Qualitatively or chemically similar odorants did not generate similar patterns across bulbar units.  相似文献   

10.
Glomeruli within the antennal lobe (AL) of moths are convergence sites for a large number of olfactory receptor neurons (ORNs). The ORNs target single glomeruli. In the male-specific cluster of glomeruli, the macroglomerular complex (MGC), the input is chemotypic in that each glomerulus of the MGC receives information about a specific component of the conspecific female sex pheromone. Little is known about how neurons that detect other odorants arborize in and amongst glomeruli. The present study focuses on how sex pheromones and biologically relevant semiochemicals are represented in the ALs of both sexes of the moth Spodoptera littoralis. To assess this, we optically measured odour-evoked changes of calcium concentration in the ALs. Foci of calcium increase corresponded in size and shape with anatomical glomeruli. More than one glomerulus was normally activated by a specific non-pheromonal odorant and the same glomerulus was activated by several odorants. All odorants and pheromone components tested evoked unique patterns of glomerular activity that were highly reproducible at repeated stimulations within an individual. Odour-evoked patterns were similar between individuals for a given odorant, implicating a spatial olfactory code. In addition, we demonstrated that activity patterns evoked by host-plant related volatiles are similar between males and females.  相似文献   

11.
The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources.  相似文献   

12.
Gentilcore  LR; Derby  CD 《Chemical senses》1998,23(3):269-281
Our study was designed to examine how components of complex mixtures can inhibit the binding of other components to receptor sites in the olfactory system of the spiny lobster Panulirus argus. Biochemical binding assays were used to study how two- to six-component mixtures inhibit binding of the radiolabeled odorants taurine, L-glutamate and adenosine-5'-monophosphate to a tissue fraction rich in dendritic membrane of olfactory receptor neurons. Our results indicate that binding inhibition by mixtures can be large and is dependent on the nature of the odorant ligand and on the concentration and composition of the mixture. The binding inhibition by mixtures of structurally related components was generally predicted using a competitive binding model and binding inhibition data for the individual components. This was not the case for binding inhibition by most mixtures of structurally unrelated odorants. The binding inhibition for these mixtures was generally smaller than that for one or more of their components, indicating that complex binding interactions between components can reduce their ability to inhibit binding. The magnitude of binding inhibition was influenced more by the mixture's precise composition than by the number of components in it, since mixtures with few components were sometimes more inhibitory than mixtures with more components. These findings raise the possibility that complex binding interactions between components of a mixture and their receptors may shape the output of olfactory receptor neurons to complex mixtures.   相似文献   

13.
A fundamental molecular feature of olfactory systems is that individual neurons express only one receptor from a large odorant receptor gene family. While numerous theories have been proposed, the functional significance and evolutionary advantage of generating a sophisticated one-receptor-per neuron expression pattern is not well understood. Using the genetically tractable Drosophila melanogaster as a model, we demonstrate that the breakdown of this highly restricted expression pattern of an odorant receptor in neurons leads to a deficit in the ability to exploit new food sources. We show that animals with ectopic co-expression of odorant receptors also have a competitive disadvantage in a complex environment with limiting food sources. At the level of the olfactory system, we find changes in both the behavioral and electrophysiological responses to odorants that are detected by endogenous receptors when an olfactory receptor is broadly misexpressed in chemosensory neurons. Taken together these results indicate that restrictive expression patterns and segregation of odorant receptors to individual neuron classes are important for sensitive odor-detection and appropriate olfactory behaviors.  相似文献   

14.
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist-OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality.  相似文献   

15.
Although many studies have reported that odorants can elicit inhibitory responses as well as excitatory responses in vertebrate olfactory receptor neurons, the cellular mechanisms that underlie this inhibition are unclear. Here we examine the inhibitory effect of odorants on newt olfactory receptor neurons using whole cell patch clamp recording. At high concentrations, odorant stimulation decreased the membrane conductance and inhibited depolarization. Various odorants (anisole, isoamyl acetate, cineole, limonene and isovaleric acid) suppressed the depolarizing current in a dose-dependent manner. Furthermore, one odorant could suppress the depolarization caused by another odorant. The depolarization caused by isoamyl acetate was inhibited by anisole in cells that were excited by isoamyl acetate but not by anisole. Odorants were able to hyperpolarize cells that were depolarized by cAMP-induced conductance. Given that this inhibitory effect of odorants can affect excitation caused by other odorants, we suggest that it might play a role in coding odorants in olfactory receptor neurons.  相似文献   

16.
The molecular logic of olfaction in Drosophila   总被引:1,自引:0,他引:1  
Drosophila fruit flies display robust olfactory-driven behaviors with an olfactory system far simpler than that of vertebrates. Endowed with 1300 olfactory receptor neurons, these insects are able to recognize and discriminate between a large number of distinct odorants. Candidate odorant receptor molecules were identified by complimentary approaches of differential cloning and genome analysis. The Drosophila odorant receptor (DOR) genes encode a novel family of proteins with seven predicted membrane-spanning domains, unrelated to vertebrate or nematode chemosensory receptors. There are on the order of 60 or more members of this gene family in the Drosophila genome, far fewer than the hundreds to thousands of receptors found in vertebrates or nematodes. DOR genes are selectively expressed in small subsets of olfactory neurons, in expression domains that are spatially conserved between individuals, bilaterally symmetric and not sexually dimorphic. Double in situ RNA hybridization with a number of pairwise combinations of DOR genes fails to reveal any overlap in gene expression, suggesting that each olfactory neuron expresses one or a small number of receptor genes and is therefore functionally distinct. How is activation of such a subpopulation of olfactory receptor neurons in the periphery sensed by the brain? In the mouse, all neurons expressing a given receptor project with precision to two of 1800 olfactory bulb glomeruli, creating a spatial map of odor quality in the brain. We have employed DOR promoter transgenes that recapitulate expression of endogenous receptor to visualize the projections of individual populations of receptor neurons to subsets of the 43 glomeruli in the Drosophila antennal lobe. The results suggest functional conservation in the logic of olfactory discrimination from insects to mammals.  相似文献   

17.
Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task.  相似文献   

18.
Physiology and morphology of olfactory neurons associated with the protocerebral lobe around the alpha-lobe of the mushroom body were studied in the brain of the honeybee Apis mellifera using intracellular recording and staining techniques. The responses of neurons to behaviorally relevant odorants (a blend, and components of the Nasonov pheromone, and some other non-pheromonal odors) were recorded. Different response patterns were observed within different neurons, and often within the same neuron, in response to different stimuli. All the neurons stained had innervations in the protocerebral lobe. The cell profiles varied from cells connecting the antennal lobe with both the protocerebral and lateral protocerebral lobes (projection neurons), cells linking the pedunculus of the mushroom body with both the protocerebral and lateral protocerebral lobes (PE1 neurons), cells linking the alpha-lobe and protocerebral lobe with the calyces of the mushroom body (feedback neurons), and cells linking the alpha-lobe and protocerebral lobe with the antennal lobe (recurrent neurons), to cells connecting the protocerebral lobe with the contralateral protocerebrum (bilateral neurons). These findings suggest that the protocerebral lobe acts as an olfactory center associating with other centers, and provides multi-layered recurrent networks within the protocerebrum and between the deutocerebrum and the protocerebrum in honeybee olfactory pathways.  相似文献   

19.
Neuronal plasticity allows an animal to respond to environmental changes by modulating its response to stimuli. In the honey bee (Apis mellifera), the biogenic amine octopamine plays a crucial role in appetitive odor learning, but little is known about how octopamine affects the brain. We investigated its effect in the antennal lobe, the first olfactory center in the brain, using calcium imaging to record background activity and odor responses before and after octopamine application. We show that octopamine increases background activity in olfactory output neurons, while reducing average calcium levels. Odor responses were modulated both upwards and downwards, with more odor response increases in glomeruli with negative or weak odor responses. Importantly, the octopamine effect was variable across glomeruli, odorants, odorant concentrations and animals, suggesting that the octopaminergic network is shaped by plasticity depending on an individual animal’s history and possibly other factors. Using RNA interference, we show that the octopamine receptor AmOA1 (homolog of the Drosophila OAMB receptor) is involved in the octopamine effect. We propose a network model in which octopamine receptors are plastic in their density and located on a subpopulation of inhibitory neurons in a disinhibitory pathway. This would improve odor-coding of behaviorally relevant, previously experienced odors.  相似文献   

20.
This article provides characterization of the electrical response to odorants in the Drosophila antenna and provides physiological evidence that a second organ, the maxillary palp, also has olfactory function in Drosophila. The acj6 mutation, previously isolated by virtue of defective olfactory behavior, affects olfactory physiology in the maxillary palp as well as in the antenna. Interestingly, abnormal chemosensory jump 6 (acj6) reduces response in the maxillary palp to all odorants tested except benzaldehyde (odor of almond), as if response to benzaldehyde is mediated through a different type of odorant pathway from the other odorants. In other experiments, different parts of the antenna are shown to differ with respect to odorant sensitivity. Evidence is also provided that antennal response to odorants varies with age, and that odorants differ in their age dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号