首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ligands for L-selectin, a leukocyte adhesion molecule, are expressed in high endothelial venules (HEVs) in lymph nodes and extravascular tissues, such as renal tubules. Here, we report that the binding of L-selectin to its vascular and extravascular ligands is differentially regulated by pH. The optimal L-selectin-dependent binding of leukocytes to HEVs was observed at pH 7.4, a physiological pH in the blood. In contrast, the optimal binding of leukocytes to the renal tubules was observed at pH 5.6. Consistently, optimal binding of soluble recombinant L-selectin to a major vascular ligand, 6-sulfo sialyl Lewis X, was observed at pH 7.4. Binding to extravascular ligands, such as chondroitin sulfate (CS) B, CS E and heparan sulfate, occurred at pH 5.6. Under physiological shear stress ranging from 1 to 2 dynes/cm2, maximal leukocyte rolling on vascular ligands was observed at pH 6.8 to 7.4, and no rolling was detected at pH conditions below 5.6. These findings suggest that the pH environment is one important factor that determines leukocyte trafficking under physiological and pathological conditions.  相似文献   

2.
Heparanase expression in invasive trophoblasts and acute vascular damage   总被引:16,自引:0,他引:16  
Heparan sulfate proteoglycans play a pivotal role in tissue function, development, inflammation, and immunity. We have identified a novel cDNA encoding human heparanase, an enzyme thought to cleave heparan sulfate in physiology and disease, and have located the HEP gene on human chromosome 4q21. Monoclonal antibodies against human heparanase located the enzyme along invasive extravillous trophoblasts of human placenta and along endothelial cells in organ xenografts targeted by hyperacute rejection, both sites of heparan sulfate digestion. Heparanase deposition was evident in arterial walls in normal tissues; however, vascular heparan sulfate cleavage was coincident with heparanase enzyme during inflammatory episodes. These findings suggest that heparanase elaboration and control of catalytic activity may contribute to the development and pathogenesis of vascular disease and suggest that heparanase intervention might be a useful therapeutic target.  相似文献   

3.
Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells (B16-BL6 melanoma; ESb T-lymphoma) attach, invade, and penetrate confluent vascular endothelial cell monlayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [35S]O4 = -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The macrophages do not store the heparanase intracellularly but it is instead found pericellularly and requires a continuous cell-matrix contact at the optimal pH for maintaining cell growth. The degradation of [35S]O4 = -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10 micrograms/ml), arteparon (10 micrograms/ml), and heparin at a concentration of 3 micrograms/ml. In contrast, other glycosaminoglycans such as hyaluronic acid, dermatan sulfate, and chondroitin sulfate as well as the specific inhibitor of exo-beta-glucuronidase D-saccharic acid 1,4-lactone failed to inhibit the degradation of sulfated proteoglycans in the subendothelial extracellular matrix. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. However, the following antiproteases--alpha 2-macroglobulin, antithrombin III, leupeptin, and phenylmethylsulfony fluoride (PMSF)--failed to inhibit this degradation process, and only alpha 1-antitrypsin inhibited the heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage heparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase, inhibited at concentrations of 1 and 3 micrograms/ml, respectively. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis.  相似文献   

4.
Mammalian heparanase, strongly implicated in the regulation of cell growth, migration, and differentiation, plays a crucial role in inflammation, angiogenesis, and metastasis. There is thus a clear need for understanding how heparanase activity is regulated. Cells can generate an active form of the enzyme from a larger inactive precursor protein by a process of secretion-recapture, internalization, and proteolytic processing in late endosomes/lysosomes. Cell surface heparan sulfate proteoglycans are the sole known components with a role in this trafficking of the heparanase precursor. Here, we provide evidence that heparan sulfate proteoglycans are not strictly required for this process. More importantly, by heparanase transfection, binding, and uptake experiments and by using a combination of specific inhibitors and receptor-defective cells, we have identified low density lipoprotein receptor-related proteins and mannose 6-phosphate receptors as key elements of the receptor system that mediates the capture of secreted heparanase precursor and its trafficking to the intracellular site of processing/activation.  相似文献   

5.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   

6.
A healthy vascular endothelium is coated by the endothelial glycocalyx. Its main constituents are transmembrane syndecans and bound heparan sulphates. This structure maintains the physiological endothelial permeability barrier and prevents leukocyte and platelet adhesion, thereby mitigating inflammation and tissue oedema. Heparinase, a bacterial analogue to heparanase, is known to attack the glycocalyx. However, the exact extent and specificity of degradation is unresolved. We show by electron microscopy, immunohistological staining and quantitative measurements of the constituent parts, that heparinase selectively sheds heparan sulphate from the glycocalyx, but not the syndecans.  相似文献   

7.
Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes.  相似文献   

8.

Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.

  相似文献   

9.
Low and high affinity receptors mediate cellular uptake of heparanase   总被引:1,自引:0,他引:1  
Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date. Here, we applied the Qproteometrade mark GlycoArray kit to perform glycan analysis of heparanase, and compared the kit results with the more commonly used biochemical analyses. We employed fibroblasts isolated from patients with I-cell disease (mucolipidosis II), fibroblasts deficient of low density lipoprotein receptor-related protein and fibroblasts lacking mannose 6-phosphate receptor, to explore the role of mannose 6-phosphate in heparanase uptake. Iodinated heparanase has been utilized to calculate binding affinity. We provide evidence for hierarchy of binding to cellular receptors as a function of heparanase concentration. We report the existence of a high affinity, low abundant (i.e., low density lipoprotein receptor-related protein, mannose 6-phosphate receptor), as well as a low affinity, high abundant (i.e., heparan sulfate proteoglycan) receptors that mediate heparanase binding, and suggest that these receptors co-operate to establish high affinity binding sites for heparanase, thus maintaining extracellular retention of the enzyme tightly regulated.  相似文献   

10.
Heparanase processing by lysosomal/endosomal protein preparation   总被引:6,自引:0,他引:6  
Cohen E  Atzmon R  Vlodavsky I  Ilan N 《FEBS letters》2005,579(11):2334-2338
Heparanase is an endo-beta-glucuronodase involved in cleavage of heparan sulfate side chains, activity that is strongly implicated in cell dissemination associated with tumor metastasis and inflammation. Heparanase is first synthesized as a latent 65 kDa precursor that is converted into an active enzyme upon proteolytic processing. Previously, we have reported that elevation of the lysosomal pH results in complete inhibition of heparanase processing, suggesting that lysosomal protease(s) and acidic pH conditions are required for heparanase processing. Here, we adopted a cell fractionation approach and provide evidence that incubation of the pro-enzyme with lysosome/endosome, but not with cytoplasmic fractions resulted in processing and activation of the 65 kDa latent heparanase. Moreover, while the water soluble lysosome/endosome fraction exhibited no apparent processing activity, heparanase processing by the water insoluble lysosome/endosome membrane fraction was readily detected and exhibited the expected pH dependency.  相似文献   

11.
The disintegrin and metalloproteases (ADAMs) are emerging as therapeutic targets in human disease, but specific drug design is hampered by potential redundancy. Unlike other metzincins, ADAM prodomains remain bound to the mature enzyme to regulate activity. Here ADAM12, a protease that promotes tumor progression and chondrocyte proliferation in osteoarthritic cartilage, is shown to possess a prodomain/catalytic domain cationic molecular switch, regulated by exogenous heparan sulfate and heparin but also endogenous cell surface proteoglycans and the polyanion, calcium pentosan polysulfate. Sheddase functions of ADAM12 are regulated by the switch, as are proteolytic functions in placental tissue and sera of pregnant women. Moreover, human heparanase, an enzyme also linked to tumorigenesis, can promote ADAM12 sheddase activity at the cell surface through cleavage of the inhibitory heparan sulfate. These data present a novel concept that might allow targeting of ADAM12 and suggest that other ADAMs may have specific regulatory activity embedded in their prodomain and catalytic domain structures.  相似文献   

12.
Heparanase is a beta-D-endoglucuronidase that cleaves heparan sulfate, an important structural component of the extracellular matrix (ECM) and vascular basement membrane (BM). The cleavage of heparan sulfate by heparanase-expressing cells, such as activated leukocytes, metastatic tumor cells, and proliferating endothelial cells, facilitates degradation of the ECM/BM to promote cell invasion associated with inflammation, tumor metastasis, and angiogenesis. In addition to its enzymatic function, heparanase has also recently been shown to act as a cell adhesion and/or signaling molecule upon interaction with cell surfaces. Despite the obvious importance of the mechanisms for the binding of heparanase to cell surfaces, the receptor(s) for heparanase remain poorly defined. In this study, we identify the 300-kDa cation-independent mannose 6-phosphate receptor (CIMPR) as a cell surface receptor for heparanase. Purified platelet heparanase was shown to bind the human CIMPR expressed on the surface of a transfected mouse L cell line. Optimal binding was determined to be at a slightly acidic pH (6.5-7.0) with heparanase remaining on the cell surface for up to 10 min at 37 degrees C. In contrast, mouse L cells or Chinese hamster ovary cells expressing the cation-dependent mannose 6-phosphate receptor (CDMPR) showed no binding of heparanase. Interestingly, the binding of heparanase to CIMPR was independent of Man-6-P moieties. Significantly, primary human T cells upon activation were shown to dramatically up-regulate levels of cell surface-expressed CIMPR, which showed a concomitant increase in their capacity to bind heparanase. Furthermore, the tethering of heparanase to the surface of cells via CIMPR was found to increase their capacity to degrade an ECM or a reconstituted BM. These data suggest an important role for CIMPR in the cell surface presentation of enzymatically active heparanase for the efficient passage of T cells into an inflammatory site and have implications for the use of this mechanism by other cell types to enhance cell invasion.  相似文献   

13.
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intra-chain sites. Blood-borne neutrophils, macrophages, mast cells, and platelets exhibit heparanase activity that is thought to be stored in specific granules. The degranulated heparanase is implicated in extravasation of metastatic tumor cells and activated cells of the immune system. Degranulation and heparanase release in response to an inflammatory stimulus or platelet activation would facilitate cellular extravasation directly, by altering the composition and structural integrity of the extracellular matrix, or indirectly, by releasing HS-bound proinflammatory cytokines and chemokines. We hypothesized that in addition to such indirect effect, the released heparanase may also locally affect and activate neighboring cells such as endothelial cells. Here, we provide evidence that addition of the 65-kDa latent heparanase to endothelial cells enhances Akt signaling. Heparanase-mediated Akt phosphorylation was independent of its enzymatic activity or the presence of cell membrane HS proteoglycans and was augmented by heparin. Moreover, addition of heparanase stimulated phosphatidylinositol 3-kinase-dependent endothelial cell migration and invasion. These results suggest, for the first time, that heparanase activates endothelial cells and elicits angiogenic responses directly. This effect appears to be mediated by as yet unidentified heparanase receptor.  相似文献   

14.
Heparan sulfate is a highly sulfated polysaccharide abundantly present in the extracellular matrix. Heparan sulfate consists of a disaccharide repeating unit of glucosamine and glucuronic and iduronic acid residues. The functions of heparan sulfate are largely dictated by its size as well as the sulfation patterns. Heparanase is an enzyme that cleaves heparan sulfate polysaccharide into smaller fragments, regulating the functions of heparan sulfate. Understanding the substrate specificity plays a critical role in dissecting the biological functions of heparanase and heparan sulfate. The prevailing view is that heparanase recognizes specific sulfation patterns in heparan sulfate. However, emerging evidence suggests that heparanase is capable of varying its substrate specificities depending on the saccharide structures around the cleavage site. The plastic substrate specificity suggests a complex role of heparanase in regulating the structures of heparan sulfate in matrix biology.  相似文献   

15.
Cell surface heparan sulfate proteoglycans undergo unique intracellular degradation pathways after they are endocytosed from the cell surface. Heparanase, an endo-beta-glucuronidase capable of cleaving heparan sulfate, has been demonstrated to contribute to the physiological degradation of heparan sulfate proteoglycans and therefore regulation of their biological functions. A rat parathyroid cell line was found to produce heparanase with an optimal activity at neutral and slightly acidic conditions suggesting that the enzyme participates in heparan sulfate proteoglycan metabolism in extralysosomal compartments. To elucidate the detailed properties of the purified enzyme, the substrate specificity against naturally occurring heparan sulfates and chemically modified heparins was studied. Cleavage sites of rat heparanase were present in heparan sulfate chains obtained from a variety of animal organs, but their occurrence was infrequent (average, 1-2 sites per chain) requiring recognition of both undersulfated and sulfated regions of heparan sulfate. On the other hand intact and chemically modified heparins were not cleaved by heparanase. The carbohydrate structure of the newly generated reducing end region of heparan sulfate cleaved by the enzyme was determined, and it represented relatively undersulfated structures. O-Sulfation of heparan sulfate chains also played important roles in substrate recognition, implying that rat parathyroid heparanase acts near the boundary of highly sulfated and undersulfated domains of heparan sulfate proteoglycans. Further elucidation of the roles of heparanase in normal physiological processes would provide an important tool for analyzing the regulation of heparan sulfate-dependent cell functions.  相似文献   

16.
Heparan sulfates, the carbohydrate chains of heparan sulfate proteoglycans, play an important role in basement membrane organization and endothelial barrier function. We explored whether endothelial cells secrete a heparan sulfate degrading heparanase under inflammatory conditions and what pathways were responsible for heparanase expression. Heparanase mRNA and protein by Western blot were induced when cultured endothelial cells were treated with cytokines, oxidized low-density lipoprotein (LDL) or fatty acids. Heparanase protein in the cell media was induced 2-10-fold when cells were treated with tumor necrosis factor alpha (TNFalpha) or interleukin 1beta (IL-1beta). Vascular endothelial growth factor (VEGF), in contrast, decreased heparanase secretion. Inhibitors to nuclear factor-kappaB (NFkappaB), PI3-kinase, MAP kinase, or c-jun kinase (JNK) did not affect TNFalpha-induced heparanase secretion. Interestingly, inhibition of caspase-8 completely abolished heparanase secretion induced by TNFalpha. Fatty acids also induced heparanase, and this required an Sp1 site in the heparanase promoter. Immunohistochemical analyses of cross sections of aorta showed intense staining for heparanase in the endothelium of apoE-null mice but not wild-type mice. Thus, heparanase is an inducible inflammatory gene product that may play an important role in vascular biology.  相似文献   

17.
We have previously demonstrated intracellular degradation of the heparan sulfate side chains in recycling glypican-1 by heparanase and by deaminative cleavage at N-unsubstituted glucosamine with nitric oxide derived from intrinsic nitrosothiols (see Ding, K., Mani, K., Cheng, F., Belting, M. and Fransson, L.-A. (2002) J. Biol. Chem. 277, 33353-33360). To determine where and in what order events take place, we have visualized, by using confocal laser-scanning immunofluorescence microscopy, glypican-1 variants in unperturbed cells or arrested at various stages of processing. In unperturbed proliferating cells, glypican-1 was partly S-nitrosylated. Intracellular glypican-1 was enriched in endosomes, colocalized significantly with GM-1 ganglioside, caveolin-1, and Rab9-positive endosomes, and carried side chains rich in N-unsubstituted glucosamine residues. However, such residues were scarce in cell surface glypican-1. Brefeldin A-arrested glypican-1, which was non-S-nitrosylated and carried side chains rich in N-unsubstituted glucosamines, colocalized extensively with caveolin-1 but not with Rab9. Suramin, which inhibits heparanase, induced the appearance of S-nitrosylated glypican-1 in caveolin-1-rich compartments. Inhibition of deaminative cleavage did not prevent heparanase from generating heparan sulfate oligosaccharides that colocalized strongly with caveolin-1. Growth-quiescent cells displayed extensive NO-dependent deaminative cleavage of heparan sulfate-generating anhydromannose-terminating fragments that were partly associated with acidic vesicles. Proliferating cells generated such fragments during polyamine uptake. We conclude that recycling glypican-1 that is associated with caveolin-1-containing endosomes undergoes sequential N-desulfation/N-deacetylation, heparanase cleavage, S-nitrosylation, NO release, and deaminative cleavage of its side chains in conjunction with polyamine uptake.  相似文献   

18.
Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans   总被引:26,自引:0,他引:26  
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intrachain sites, an activity that is strongly implicated in cell dissemination associated with metastasis and inflammation. In addition to its structural role in extracellular matrix assembly and integrity, HS sequesters a multitude of polypeptides that reside in the extracellular matrix as a reservoir. A variety of growth factors, cytokines, chemokines, and enzymes can be released by heparanase activity and profoundly affect cell and tissue function. Thus, heparanase bioavailability, accessibility, and activity should be kept tightly regulated. We provide evidence that HS is not only a substrate for, but also a regulator of, heparanase. Addition of heparin or xylosides to cell cultures resulted in a pronounced accumulation of, heparanase in the culture medium, whereas sodium chlorate had no such effect. Moreover, cellular uptake of heparanase was markedly reduced in HS-deficient CHO-745 mutant cells, heparan sulfate proteoglycan-deficient HT-29 colon cancer cells, and heparinase-treated cells. We also studied the heparanase biosynthetic route and found that the half-life of the active enzyme is approximately 30 h. This and previous localization studies suggest that heparanase resides in the endosomal/lysosomal compartment for a relatively long period of time and is likely to play a role in the normal turnover of HS. Co-localization studies and cell fractionation following heparanase addition have identified syndecan family members as candidate molecules responsible for heparanase uptake, providing an efficient mechanism that limits extracellular accumulation and function of heparanase.  相似文献   

19.
Recently we identified a plasma serine protease with a high affinity to glycosaminoglycans like heparin or hyaluronic acid, termed hyaluronan-binding protease (HABP). Since glycosaminoglycans are found on cell surfaces and in the extracellular matrix a physiological role of this plasma protease in a pericellular environment was postulated. Here we studied the influence of HABP on the regulation of endothelial cell growth. We found that HABP efficiently prevented the basic fibroblast growth factor/epidermal growth factor (bFGF/EGF)-dependent proliferation of human umbilical vein endothelial cells. Proteolytic cleavage of adhesion molecules was found to be involved, but was not solely responsible for the anti-proliferative activity. Pre-treatment of growth factor-supplemented cell culture medium with HABP indicated that no direct contact between the active protease and cells was required for growth inhibition. In vitro studies revealed a growth factor-directed activity of HABP, resulting in complexation and partial hydrolysis and, thus, inactivation of basic fibroblast growth factor, a potent mitogen for endothelial cells. Heparin and heparan sulfate fully protected bFGF from complexation and cleavage by HABP, although these glycosaminoglycans are known to enhance the proteolytic activity of HABP. This finding suggested that free circulating bFGF rather than bFGF bound to heparan sulfate proteoglycans would be a physiologic substrate. In conclusion, down-regulation of bFGF-dependent endothelial cell growth represents an important mechanism through which HABP could control cell growth in physiologic or pathologic processes like angiogenesis, wound healing or tumor development.  相似文献   

20.
The role that heparanase plays during metastasis and angiogenesis in tumors makes it an attractive target for cancer therapeutics. Despite this enzyme’s significance, most of the assays developed to measure its activity are complex. Moreover, they usually rely on labeling variable preparations of the natural substrate heparan sulfate, making comparisons across studies precarious. To overcome these problems, we have developed a convenient assay based on the cleavage of the synthetic heparin oligosaccharide fondaparinux. The assay measures the appearance of the disaccharide product of heparanase-catalyzed fondaparinux cleavage colorimetrically using the tetrazolium salt WST-1. Because this assay has a homogeneous substrate with a single point of cleavage, the kinetics of the enzyme can be reliably characterized, giving a Km of 46 μM and a kcat of 3.5 s−1 with fondaparinux as substrate. The inhibition of heparanase by the published inhibitor, PI-88, was also studied, and a Ki of 7.9 nM was determined. The simplicity and robustness of this method, should, not only greatly assist routine assay of heparanase activity but also could be adapted for high-throughput screening of compound libraries, with the data generated being directly comparable across studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号