首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the relationship between signal transduction and the expression of insulin-like growth factor I (IGF-I), IGF-I receptor level, and IGF binding proteins (IGFBPs) in murine clonal osteoblastic MC3T3-E1 cells. 12–O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, decreased the secretion of immunoreactive IGF-I into the medium, whereas dibutyryl cAMP (Bt2cAMP) augmented the secretion In contrast, TPA increased the level of type IIGF receptor on the cells. Furthermore, MC3T3-E1 cells produced and secreted at least three different IGFBPs with molecular masses of 24, 30, and 34 kDa, and the 24-kDa IGFBP was predominant under normal conditions. However, TPA specifically increased the secretion of the 34-kDa IGFBP. The N-terminal amino acid sequence of the purified 34-kDa IGFBP was nearly identical with that of rat IGFBP-2. Furthermore, the 34-kDa IGFBP was immunoreactive to anti-IGFBP-2 antiserum. The level of IGFBP-2 mRNA in the cells was increased by TPA, indicating that the increase in IGFBP-2 secretion results from the stimulation of IGFBP-2 production. In contrast, Bt2cAMP affected neither IGF-l receptor number nor the IGFBP secretion. These results indicate that the production of IGF-l and the expression of IGF-l receptors and IGFBP-2 are up-regulated by the activation of adenylate cyclase and protein kinase C, respectively, in osteoblastic MC3T3-E1 cells. © 1994 Willey-Liss, Inc.  相似文献   

2.
Summary The current study was designed to examine the effects of muscle and fat stem cell coculture on the secretion of insulinlike growth factor (IGF)-I and -II and IGF binding proteins (IGFBP) by these cells. Two sheep satellite cell strains with negligible or high potential for differentiation (10A and 01, respectively) were placed in coculture with 3T3-L1 preadipocytes using a filter support to separate the two cell types. Media conditioned by the cells grown alone or in coculture were analyzed for IGFs by RIA or IGFBPs by ligand blotting. The numbers of satellite cells and preadipocytes declined throughout the 5-d culture period, although coculture slowed the 3T3-L1 decline but hastened the satellite cell decline. The satellite cell strains and 3T3-L1 cells secreted small amounts of IGF-I (≤2 ng/ml) and IGF-II (<10 ng/ml) over the 5-d culture period. Coculture did not increase the amount of IGF-I and -II in conditioned media. The lowly differentiating 10A cells secreted barely detectable amounts of the low molecular weight IGFBP-3 subunit (34 kDa), IGFBP-2 (28 kDa), and IGFBP-4 (18 kDa). Coculture of 10A and 3T3-L1 cells potentiated secretion of IGFBP-2 and-3. Strain 01, which readily differentiates, secreted high levels of both IGFBP-3 subunits (34 and 39 kDa) and IGFBP-2 (28 kDa), as well as significant amounts of the 18 kDa IGFBP-4. Coculture did not alter IGFBP secretion of 01 cells. This study showed that while IGF-I and -II levels in media conditioned by sheep satellite cell strains are low and relatively invariant, the intensity and complexity of IGFBP patterns increases with time in culture and with the potential for differentiation of the satellite cell strains. Coculture with preadipocytes appeared to potentiate IGFBP secretion while reducing satellite cell viability.  相似文献   

3.
Regulation of the production of insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBPs), and their related proteins by various hormones was investigated in primary cultures of rat liver parenchymal and nonparenchymal cells.

Freshly isolated parenchymal cells contained mRNAs of IGF-I, IGF-II, IGFBP-1, IGFBP-4, growth hormone (GH) receptor, and the acid-labile subunit (ALS), which forms a ternary complex with IGF-I and IGFBP-3; however, parenchymal cells did not express the IGFBP-3 gene. In contrast, nonparenchymal cells contained IGFBP-3 mRNA exclusively, as we reported previously [Takenaka et al. Agric. Biol. Chem., 55, 1191–1193 (1991)]. Cultured rat parenchymal cells produced IGF-I, IGFBP-1, and IGFBP-4 prominently. In these cells, secretion of IGF-I and the content of IGF-I mRNA was greatly increased in the presence of GH in the medium. Insulin also increased the production of IGF-I. Secretion of IGFBP-l into the medium was enhanced by treatment with glucagon, dibutyrylcyclic AMP (Bu2cAMP), and dexamethasone (Dex) and these enhancements with glucagon and Dex reflected the increase in its mRNA content. Insulin depressed the secretion of IGFBP-l. The content of IGFBP-4 in the parenchymal cells was increased by insulin, Bu2cAMP, and triiodothyronine (T3), thereby enhancing the production of IGFBP-4 and secretion into the medium. Cultured liver nonparenchymal cells of rats produced IGFBP-1, IGFBP-3, and IGFBP-4. Secretion of IGFBP-l was increased by Bu2cAMP in the medium, that of IGFBP-3 by IGF-I, and that of IGFBP-4 by both IGF-I and Bu2cAMP. Regulation of the production of IGFBP-3 by IGF-I was demonstrated in these investigations.

These results suggest that GH increases production of IGF-I in the parenchymal cells and this IGF-I, in turn, increases the production of IGFBP-3 in nonparenchymal cells. As we found GH also increases ALS production in parenchymal cells, by these mechanisms, GH increases the formation of the ternary complex of IGF-I, IGFBP-3, and ALS. This study clearly demonstrates the interrelationship between parenchymal and nonparenchymal cells in the production of IGF-I and IGFBPs in the liver.  相似文献   

4.
The insulin-like growth factors (IGFs) I and II are present in extracellular fluids associated with specific binding proteins (IGFBPs) that can modify their biologic actions. These studies were undertaken to determine which forms of IGFBP are secreted by endometrial carcinoma (HEC-1B) and breast carcinoma (MDA-231) cells, to characterize variables that control IGFBP secretion, and to study the effect of IGFBP-1 and IGFBP-2 on IGF-I stimulated cell proliferation. Secreted IGFBPs were identified by ligand blotting and IGFBP-1 was quantified using a specific radioimmunoassay (RIA). MDA-231 cell conditioned media (CM) contained four (43,000, 39,000, 30,000 and 24,000 Mr) forms of IGFBP, and HEC-1B cell CM contained three forms (39,000, 34,000 and 30,000 Mr). Immunoblotting showed that the 30,000 Mr form secreted by both cell types was IGFBP-1. Likewise the 34,000 Mr band in HEC-1B media reacted with IGFBP-2 antiserum and the 39,000 and 43,000 Mr bands reacted with IGFBP-3 antiserum. IGF-I stimulated the secretion of IGFBP-3 from both cell types and IGFBP-2 from HEC-1B cells but either decreased or caused no change in secretion of IGFBP-1 and a 24,000 Mr form. In contrast, insulin inhibited the secretion of IGFBP-1 but increased the secretion of the 24,000 Mr form. Compounds that elevate intracellular cAMP levels increased the secretion of IGFBP-3, IGFBP-1, and the 24,000 Mr form from both MDA-231 and HEC-1B cells. When sparse cultures of MDA-231 cells were used, addition of IGF-I caused a 24% increase in cell number after 48 hr. This mitogenic response was enhanced by the presence of recombinant human IGFBP-1 (45% increase in cell number, P less than 0.001). Bovine IGFBP-2 did not potentiate IGF-I stimulated cell proliferation. These findings show that two tumor cell lines secrete distinct forms of IGFBPs and that there is differential regulation of IGFBP secretion. At least one form secreted by both tumors may act as a positive autocrine modulator of IGF-I's growth stimulating actions.  相似文献   

5.
The effects of dexamethasone (Dex) on insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-l production were investigated in primary cultures of rat hepatocytes. Dex enhanced the secretion of IGFBP-1 as measured by ligand blot analysis but did not show any prominent effect on immunoreactive IGF-I secretion. EC50 of Dex on IGFBP-1 secretion was calculated to be 3 × 10?8m. The content of IGFBP-1 mRNA in the cells increased greatly in the presence of Dex but the IGF-I mRNA content did not change significantly under the same conditions. Insulin showed the opposite effect of Dex by decreasing the production of IGFBP-1 and the cellular content of IGFBP-1 mRNA. This effect of insulin was observed also with Dex in the medium. These results show that the gene expression of IGF-I and IGFBP-1 is differently regulated by glucocorticoids and insulin in primary cultures of rat hepatocytes. The results most possibly explain the in vivo effects of glucocorticoids and insulin in regulation of IGF-I and IGFBP-1 production by liver.  相似文献   

6.
7.
Insulin-like growth factor-binding protein-5 (IGFBP-5) and insulin-like growth factor-I (IGF-I) are produced by human intestinal smooth muscle cells. Endogenous IGF-I stimulates growth and increases IGFBP-5 secretion. IGFBP-5 augments the effects of IGF-I by facilitating interaction of IGF-I with the IGF-I receptor tyrosine kinase. Andress (Andress, D. L. (1998) Am. J. Physiol. 274, E744-E750) and Berfield et al. (Berfield, A. K., Andress, D. L., and Abrass, C. K. (2000) Kidney Int. 57, 1991-2003) have shown that in osteoblasts and kidney mesangial cells, IGFBP-5 stimulates proliferation and filopodia formation independently of IGF-I, presumably by activating a distinct IGFBP-5 receptor serine kinase. The present study determined whether IGFBP-5 exerts direct effects on growth in human intestinal smooth muscle cells and identified the intracellular signaling pathways involved. IGFBP-5 caused a concentration-dependent increase in [(3)H]thymidine incorporation and an increase in IGF-I secretion that occurred independently of IGF-I and the IGF-I receptor tyrosine kinase. IGFBP-5-induced phosphorylation of p38 MAP kinase, which was abolished by SB203580, or expression of a dominant negative Ras mutant, Ras(S17N), and phosphorylation of Erk1/2, which was abolished by a Raf1 kinase inhibitor, U1026, or expression of Ras(S17N). IGFBP-5-stimulated [(3)H]thymidine incorporation and IGF-I secretion were partly inhibited by SB203580 or U1026 and abolished by the combination of the two inhibitors or by expression of Ras(S17N). These data show that IGFBP-5 stimulates growth and IGF-I secretion in human intestinal smooth muscle cells by activation of p38 MAP kinase-dependent and Erk1/2-dependent pathways that are independent of IGF-I. A positive feedback mechanism therefore links IGFBP-5 and IGF-I secretion that reinforces their individual effects on growth.  相似文献   

8.
9.
10.
We have found that over one-half of the total cell surface 125I-insulin-like growth factor I (IGF-I) binding to BHK cells represents binding to IGF binding proteins (IGFBPs) rather than to the IGF-I receptor. In addition to a number of secreted IGFBPs, we have now characterized two cell-associated IGFBPs with unique characteristics. The cell-associated IGFBPs have molecular weights of 30,000 (30K) and 25,000 (25K), as determined by the Western ligand blot technique. IGFBP-30K is located at the cell surface and can be readily labeled by affinity cross-linking with 125I-IGF-I. Surface expression of IGFBP-30K increases 5.4 +/- 1.2-fold (n = 11) with serum starvation. This induction is fully evident by 4 h, plateauing by 24 h, and is completely inhibitable by cycloheximide. The fasting-induced increase in IGFBP-30K is inhibited by IGF-I and by des-IGF-I and, to a lesser extent, by insulin. Unlike cell-associated IGFBP-30K, secretion of IGFBP was stimulated (6.8 +/- 0.5-fold, n = 2) by IGF-I, whereas IGFBP secretion was inhibited 54% by insulin. These results demonstrate coordinate regulation of IGFBP by serum starvation and IGF-I, such that at low concentrations of IGF-I, cell surface binding protein increases whereas binding protein secretion decreases. At high concentrations of IGF-I, IGFBP secretion increases and cell surface IGF-I receptor, as well as IGFBP, decreases. Taken together, these regulatory events regulate the availability of IGF-I for biologic signalling.  相似文献   

11.
IGF-I and IGF-II are essential regulators of mammalian growth, development and metabolism, whose actions are modified by six high-affinity IGF binding proteins (IGFBPs). New lines of knockout (KO) mice lacking either IGFBP-3, -4, or -5 had no apparent deficiencies in growth or metabolism beyond a modest growth impairment (approximately 85-90% of wild type) when IGFBP-4 was eliminated. To continue to address the roles of these proteins in whole animal physiology, we generated combinational IGFBP KO mice. Mice homozygous for targeted defects in IGFBP-3, -4, and -5 remain viable and at birth were the same size as IGFBP-4 KO mice. Unlike IGFBP-4 KO mice, however, the triple KO mice became significantly smaller by adulthood (78% wild type) and had significant reductions in fat pad accumulation (P < 0.05), circulating levels of total IGF-I (45% of wild type; P < 0.05) and IGF-I bioactivity (37% of wild type; P < 0.05). Metabolically, triple KO mice showed normal insulin tolerance, but a 37% expansion (P < 0.05) of beta-cell number and significantly increased insulin secretion after glucose challenge, which leads to enhanced glucose disposal. Finally, triple KO mice demonstrated a tissue-specific decline in activation of the Erk signaling pathway as well as weight of the quadriceps muscle. Taken together, these data provide direct evidence for combinatorial effects of IGFBP-3, -4, and -5 in both metabolism and at least some soft tissues and strongly suggest overlapping roles for IGFBP-3 and -5 in maintaining IGF-I-mediated postnatal growth in mice.  相似文献   

12.
Human intestinal smooth muscle in culture produces insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3, IGFBP-4, and IGFBP-5, which modulate the effects of IGF-I. This study examined the regulation of IGFBP production by endogenous IGF-I. R3-IGF-I, an agonist unaffected by IGFBPs, elicited concentration-dependent increase in growth, measured by [(3)H]thymidine incorporation, and production of IGFBP-3, IGFBP-4, and IGFBP-5, measured by Western blot. Antagonists of the IGF-I receptor, IGF-I Analog or monoclonal antibody 1H7, elicited concentration-dependent inhibition of growth and decrease in IGFBP-3, IGFBP-4, and IGFBP-5 production, implying that endogenous IGF-I stimulated growth and IGFBP production. R3-IGF-I-induced increase in IGFBP-3, IGFBP-4, and IGFBP-5 production was partially inhibited by a mitogen-activated protein (MAP) kinase or a phosphatidylinositol-3-kinase (PI 3-kinase) inhibitor and abolished by the combination. We conclude that endogenous IGF-I stimulates growth and IGFBP-3, IGFBP-4, and IGFBP-5 production in human intestinal smooth muscle cells. Regulation of IGFBP production by IGF-I is mediated by activation of distinct MAP kinase and PI 3-kinase pathways, the same pathways through which IGF-I stimulates growth.  相似文献   

13.
Abstract

Recent studies indicate increased insulin-like growth factor I (IGF-I) expression and altered expression of IGF binding proteins (IGFBP) in the bowel during experimental colitis. This study analyzes the cellular sites of altered IGF-I and IGFBP-expression in large bowel of rats with experimental colitis. Colitis was induced by colonic instillation of 2, 4, 6- trinitrobenzenesulfonic (TNB) acid in ethanol. Animals were sacrificed at 7 days after induction of colitis. Cryostat sections of colon from TNB-treated and control rats were hybridized with 35S-labeled antisense probes for IGF-I, IGFBP-3, IGFBP-4 and IGFBP-5. IGF-I mRNA was up-regulated in lamina propria cells, submucosa and smooth muscle of inflamed colon. IGFBP-3 mRNA was localized to lamina propria and was down-regulated in inflamed colon. IGFBP-4 and IGFBP-5 mRNAs were both up-regulated in inflamed colon. IGFBP-4 mRNA was increased in lamina propria, submucosa and smooth muscle, whereas IGFBP-5 mRNA was increased in smooth muscle. Increased IGF-I expression in mesenchymal layers of colon during experimental colitis supports the hypothesis that IGF-I contributes to hyperplasia and fibrosis in response to inflammation. Altered expression of IGFBP-3, IGFBP-4 and IGFBP-5 in specific bowel layers during colitis suggests that they play a role in modulating IGF-I action.  相似文献   

14.
The effects of dexamethasone (Dex) on insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 production were investigated in primary cultures of rat hepatocytes. Dex enhanced the secretion of IGFBP-1 as measured by ligand blot analysis but did not show any prominent effect on immunoreactive IGF-I secretion. EC50 of Dex on IGFBP-1 secretion was calculated to be 3 x 10(-8) M. The content of IGFBP-1 mRNA in the cells increased greatly in the presence of Dex but the IGF-I mRNA content did not change significantly under the same conditions. Insulin showed the opposite effect of Dex by decreasing the production of IGFBP-1 and the cellular content of IGFBP-1 mRNA. This effect of insulin was observed also with Dex in the medium. These results show that the gene expression of IGF-I and IGFBP-1 is differently regulated by glucocorticoids and insulin in primary cultures of rat hepatocytes. The results most possibly explain the in vivo effects of glucocorticoids and insulin in regulation of IGF-I and IGFBP-1 production by liver.  相似文献   

15.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

16.
17.
18.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351–362, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

20.
Growth factors such as platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF-1) stimulate proliferation and migration of vascular smooth muscle cells (SMC). IGF-l bioactivity is modulated by high-affinity binding proteins (IGFBP) which are important regulators of these processes. Procine vascular SMC synthesize IGFBP-2 and IGFBP-4 in vitro. In the present study, levels of IGFBP-2 in conditioned media (CM) were increased approximately 1.6 to 2.2-fold when cells were exposed to PDGF (20 ng.ml) or insulin (5 μg/ml) for 24 hr following a 24 hr incubation in serum-free media, or following a 72 hr exposure to either growth factor. Similar increases in IGFBP-2 mRNA levels were observed. Exposure of cells to PDGF for 24 hr without prior serum deprivation resulted in smaller (47 ± 11%) increases in IGFBP-2 protein levels but failed to alter mRNA levels. IGF-1, FGF-b? and EGF failed to increase IGFBP-2 using either experimental paradigm. In contrast, IGFBP-2 protein levels were consistently decreased (75 ± 14%) after 72 hr of exposure to IGF-II without corresponding decreases in IGFBP-2 mRNA levels. Immunoprecipitation of [35S] methionine-labeled IGFBP-2 indicated that this decrease was not due to a decrease in synthesis of IGFBP-2. Immunoblot analysis of CM from cells treated with IGF-II indicated that the decrease in intact protein corresponded with an increase in two non-IGF binding IGFBP-2 fragments of 22 and 14 kD. Increased abundance of these fragements was also observed following IGF-I exposure, although corresponding decreases in intact IGFBP-2 were not usually observed. The relative abundance of these fragments did not appear to be affected by treatment with PDGF or insulin. In contrast to IGFBP-2, regulation of the levels of IGFBP-4 in CM did not appear to be altered by serum deprivation. Insulin consistently increased IGFBP-4 mRNA and protein levels under all situations. PDGF tended to increase IGFBP-4 protein levels, although this effect was less consistent and not as great as the increase observe with insulin. Treatment with IGF-I or -ll consistently decreased IGFBP-4 levels in CM but tended to increase their mRNA levels under all situations. These data indicate that insulin, PDGF, and the IGFs regulate both IGFBP-2 and IGFBP-4. While PDGF and insulin stimulate IGFBP-2 and 4 synthesis, the IGFs appear to activate protease(s) which regulate IGFBP-2 and -4 levels post-translationally. The regulation of IGFBP-2 levels by each of these mechanisms appears to be amplified by serum deprivation, but this is not observed with IGFBP-4. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号