首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.  相似文献   

2.
Previously we reported that treatment of boar sperm with cAMP-elevating drugs induces tyrosine phosphorylation of a triton-insoluble 93 kDa protein (p93). We have isolated p93 by preparative SDS electrophoresis and blotting from urea-extracted boar sperm and identified it as a valosine containing protein (VCP) by mass spectrometry and microsequencing. With the use of antibodies to VCP and phosphotyrosine (pY) we found that both p93 and VCP are poorly extractable with triton and are solubilized in > 6 M urea. Furthermore, VCP and p93 overlap on one and two dimensional (1 and 2D) electrophoretic gels, supporting the identity of p93 as a tyrosine-phosphorylated population of VCP. According to immunofluorescence, VCP is localized along the entire sperm tail, in the posterior ring, distal equatorial segment, and postacrosome. In addition, 9-12% sperm contained VCP in the acrosome. The cAMP-elevating treatment did not alter VCP localization but induced tail tyrosine phosphorylation in 15% sperm cells. In those sperm, VCP and pY colocalized in connecting piece and posterior ring.  相似文献   

3.
Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIα. Almost no difference was found in the intracellular presence of the PKA RIα and RIIα subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.  相似文献   

4.
Capacitation and capacitation-related hyperactivated motility do not occur spontaneously in cynomolgus monkey (Macaca fascicularis) spermatozoa; instead, both have an absolute requirement for exogenous stimulation with caffeine and dibutyryl (db)cAMP. In the present study, we 1) defined sorting criteria for automated analysis of macaque sperm exhibiting hyperactivated motility (HA) and 2) investigated protein tyrosine phosphorylation involvement in dbcAMP- and caffeine-stimulated capacitation and HA. Motion characteristics were assessed by computer-assisted motion analysis. Tyrosine phosphorylation of sperm tail proteins was determined by immunocytochemistry with PY-20 antiserum. Automated sorting criteria for HA were curvilinear velocity (VCL) >/= 150 microm/sec; amplitude of lateral head displacement (ALH) >/= 8.0 microm, and linearity (LIN) 相似文献   

5.
SPINKL, a serine protease inhibitor kazal‐type‐like protein initially found in mouse seminal vesicle secretions, possesses structurally conserved six‐cysteine residues of the kazal‐type serine protease inhibitor family. However, it has no inhibitory activity against serine proteases. Previously, it was found to have the ability to suppress murine sperm capacitation in vitro. Herein, we investigated the mechanisms underlying the suppressive effect of SPINKL on sperm capacitation. Three in vitro capacitation‐enhancing agents, including bovine serum albumin (BSA), methyl‐beta‐cyclodextrin (MBCD), and dibutyryl cyclic AMP (dbcAMP), coupled with 3‐isobutyl‐1‐methylxanthine (IBMX), were used to evaluate the influence of SPINKL on capacitation signaling. Preincubation of sperm with SPINKL suppressed BSA‐ and MBCD‐induced sperm capacitation by blocking three upstream signals of capacitation that is the cholesterol efflux from sperm plasma membranes, extracellular calcium ion influx into sperm, and increases in intracellular cAMP. Moreover, SPINKL also inhibited downstream signal transduction of capacitation since it suppressed dbcAMP/IBMX and N6‐phenyl cAMP (6‐Phe‐cAMP)‐activated cAMP‐dependent protein kinase‐associated protein tyrosine phosphorylation. Such inhibition is probably mediated by attenuation of SRC tyrosine kinase activity. Furthermore, SPINKL could not reverse capacitation once sperm had been capacitated by capacitation‐enhancing agents or capacitated in vivo in the oviduct. SPINKL bound to sperm existed in the uterus but had disappeared from sperm in the oviduct during the sperm's transit through the female reproductive tract. Therefore, SPINKL may serve as an uncapacitation factor in the uterus to prevent sperm from precocious capacitation and the subsequent acrosome reaction and thus preserve the fertilization ability of sperm. J. Cell. Biochem. 114: 888–898, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Phosphorylation of tyrosine residues on sperm proteins is one important intracellular mechanism regulating sperm function that may be a meaningful indicator of capacitation. There is substantial evidence that cryopreservation promotes the capacitation of sperm and this cryocapacitation is frequently cited as one factor associated with the reduced longevity of cryopreserved sperm in the female reproductive tract. This study was designed to determine whether stallion sperm express different levels of tyrosine phosphorylation after in vitro capacitation and whether thawed sperm display similar phosphorylation characteristics in comparison with freshly ejaculated sperm. Experiments were performed to facilitate comparisons of tyrosine phosphorylation, motility, and viability of sperm prior to and following in vitro capacitation in fresh and frozen-thawed sperm. We hypothesized that equine spermatozoa undergo tyrosine phosphorylation during capacitation and that this phosphorylation is modified when sperm have been cryopreserved. We also hypothesized that tyrosine phosphorylation could be enhanced by the use of the activators dibutyryl cAMP (db cAMP) and caffeine, as well as methyl beta-cyclodextrin-which causes cholesterol efflux from the spermatozoa-and inhibited by the protein kinase A (PK-A) inhibitor H-89. Our results indicate that equine sperm capacitation is mediated by a signaling pathway that involves cAMP-dependent PK-A and tyrosine kinases and that cryopreserved sperm may be more sensitive to inducers of capacitation, which could explain their limited life span when compared with fresh sperm.  相似文献   

7.
H Zhang  H Yu  X Wang  W Zheng  B Yang  J Pi  G He  W Qu 《PloS one》2012,7(8):e43004
α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 μM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.  相似文献   

8.
Hyperactivated sperm motility is characterized by high-amplitude and asymmetrical flagellar beating that assists sperm in penetrating the oocyte zona pellucida. Other functional changes in sperm, such as activation of motility and capacitation, involve cross talk between the cAMP/PKA and tyrosine kinase/phosphatase signaling pathways. Our objective was to determine the role of the cAMP/protein kinase A (PKA) signaling pathway in hyperactivation. Western blot analyses of detergent extracts of whole sperm and flagella were performed using antiphosphotyrosine antibody. Bull sperm capacitated by 10 microg/ml heparin and/or 1 mM dibutyryl-cAMP plus 100 microM 3-isobutyl-1-methylxanthine exhibited increased protein tyrosine phosphorylation without becoming hyperactivated. Procaine (5 mM) or caffeine (10 mM) immediately induced hyperactivation in nearly 100% of motile sperm but did not increase protein tyrosine phosphorylation. After 4 h of incubation with caffeine, sperm expressed capacitation-associated protein tyrosine phosphorylation but hyperactivation was significantly reduced. Sperm initially hyperactivated by procaine or caffeine remained hyperactivated for at least 4 h in the presence of Rp-cAMPS (cAMP antagonist) or PKA inhibitors H-89 or H-8. Pretreatment with inhibitors also failed to block induction of hyperactivation; however, the inhibitors did block protein tyrosine phosphorylation when sperm were incubated with capacitating agents, thereby verifying inhibition of the cAMP/PKA pathway. While induction of hyperactivation did not depend on cAMP/PKA, it did require extracellular Ca(2+). These findings indicate that hyperactivation is mediated by a Ca(2+) signaling pathway that is separate or divergent from the pathway associated with acquisition of acrosomal responsiveness and does not involve protein tyrosine phosphorylation downstream of the actions of procaine or caffeine.  相似文献   

9.
Efficient in vitro capacitation of stallion sperm has not yet been achieved, as suggested by low sperm penetration rates reported in in vitro fertilization (IVF) studies. Our objectives were to evaluate defined incubation conditions that would support changes consistent with capacitation in stallion sperm. Protein tyrosine phosphorylation events and the ability of sperm to undergo acrosomal exocytosis under various incubation conditions were used as end points for capacitation. Sperm incubated 4-6h in modified Whitten's (MW) with the addition of 25 mM NaHCO3 and 7 mg/mL BSA (capacitating medium) yielded high rates of protein tyrosine phosphorylation. Either HCO3(-) or BSA was required to support these changes, with the combination of both providing the most intense results. When a membrane-permeable form of cAMP and a phosphodiesterase inhibitor (IBMX) were added to MW in the absence of HCO3(-) and BSA, the tyrosine phosphorylation results obtained in our capacitating conditions could not be replicated, suggesting either effects apart from cAMP were responsible for tyrosine phosphorylation, or that stallion sperm might respond differently to these reagents as compared to sperm from other mammals. Sperm incubation in capacitating conditions was also associated with high percentages (P相似文献   

10.
Capacitation of macaque sperm with caffeine and dbcAMP is required for fertilization in vitro. This study determined the separate effects of caffeine and dbcAMP on sperm-zona pellucida binding and the acrosome reaction of zona bound sperm. Semen from 6 cynomolgus macaques was washed through 60% Percoll, resuspended, and washed with BWW media and incubated for 2.5 hr. Caffeine, dbcAMP (2 mM each), or both (1 mM each) were added to aliquots of the sperm suspensions. Immature macaque oocytes were placed into drops of sperm suspensions, coincubated with sperm for 30 sec, and either fixed immediately or removed to sperm-free media and incubated 1 hr before fixation. There were no significant diffences between groups in the percentage of live, acrosome-reacted sperm in suspension. Treatment with caffeine and dbcAMP or with caffeine alone, significantly increased the number of sperm bound to each zona pellucida (96 ± 16 and 81 ± 17, respectively) compared to control and dbcAMP treatment (15 ± 4 and 28 ± 13). However, treatment with dbcAMP, alone and with caffeine, resulted in a higher percentage of acrosome-reacted sperm on the zona (15.2 ± 2.1 and 9.0 ± 0.6) than control or caffeine treatment (3.0 ± 1.4 and 2.4 ± 0.5). Effects on sperm motility consistent with hyperactivation were detected only when both caffeine and dbcAMP were present. Although both caffeine and dbcAMP are presumed to increase or to produce the same effects as increased intracellular cAMP levels, these compounds have different effects on the ability of sperm to bind to the zona and to undergo the acrosome reaction. © 1994 Wiley-Liss, Inc.  相似文献   

11.
Capacitation is the prerequisite process for sperm to gain the ability for successful fertilization. Unregulated capacitation will cause sperm to undergo a spontaneous acrosome reaction and then fail to fertilize an egg. Seminal plasma is thought to have the ability to suppress sperm capacitation. However, the mechanisms by which seminal proteins suppress capacitation have not been well understood. Recently, we demonstrated that a major seminal vesicle secretory protein, seminal vesicle autoantigen (SVA), is able to suppress bovine serum albumin (BSA)-induced mouse sperm capacitation. To further identify the mechanism of SVA action, we determine the molecular events associated with SVA suppression of BSA's activity. In this communication, we demonstrate that SVA suppresses the BSA-induced increase of intracellular calcium concentration ([Ca2+]i), intracellular pH (pH(i)), the cAMP level, PKA activity, protein tyrosine phosphorylation, and capacitation in mouse sperm. Besides, we also found that the suppression ability of SVA against BSA-induced protein tyrosine phosphorylation and capacitation could be reversed by dbcAMP (a cAMP agonist).  相似文献   

12.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

13.
ESP13.2 coats the entire surface of macaque sperm and remains until sperm become capacitated (Yudin et al., 2003: Biol Reprod 69: 1118-1128). Capacitation of macaque sperm is synchronized by treatment with dibutyrl cAMP (dbcAMP) and caffeine. ESP13.2 and PSP94 constituted approximately 95% of the proteins released from the sperm surface following treatment with caffeine + dbcAMP. Caffeine and dbcAMP alone induce different patterns of ESP13.2 release. As determined by ELISAs of supernatants and immuno-fluorescent labeling of sperm heads, caffeine alone and caffeine + dbcAMP induced comparable release of ESP13.2, while dbcAMP-treated sperm did not differ from controls. Sperm treated with caffeine + dbcAMP showed a reduction of ESP13.2 from the entire surface, while caffeine treatment alone induced removal of ESP13.2 from the sperm head and midpiece. As confirmed with immunofluorescence, ESP13.2 could be added back to the surfaces of sperm that had been previously exposed to caffeine. Treatment with caffeine significantly increased the number of sperm that bound tightly to the zona pellucida as compared with controls (42 +/- 9 and 13 +/- 3 sperm/zona, respectively; P < or = 0.01). This increase in binding was inhibited by "adding back" ESP13.2 to the sperm surface (12.8 +/- 3; P < or = 0.01). Alexa-conjugated anti-ESP13.2 Ig labeling of live sperm showed that only sperm lacking ESP13.2 over the head were capable of tight binding to the zona. Our results suggest that ESP13.2 masks zona pellucida ligands on the sperm surface and its release, as part of capacitation, is required for sperm-zona interaction.  相似文献   

14.
cAMP and calcium are two important regulators of sperm flagellar motility. cAMP stimulates sperm motility by activating cAMP-dependent protein kinase and catalyzing the phosphorylation of sperm proteins. The stimulation of sperm motility by cAMP appears to be at two different levels. Evidence has been presented to suggest that cAMP-dependent phosphorylations may be required in order for motility to be initiated. In addition, cAMP-dependent phosphorylation appears to modulate specific parameters of motility resulting in higher beat frequency or greater wave amplitude. Calcium, on the other hand, when elevated intracellularly to 10(-6) M or higher, inhibits flagellar motility. The calcium-binding protein, calmodulin, appears to mediate a large number of effects of calcium on motility. Evidence suggests that calcium-calmodulin may be involved at the level of the membrane to pump calcium out of the flagellum. In addition, calcium-calmodulin may be involved in the control of axonemal function by regulating dynein ATPase and myosin light chain kinase activities. The identification of cAMP-dependent protein kinase, calmodulin and myosin light chain kinase in the sperm head suggests that cAMP and calcium-dependent phosphorylations are also involved in the control of the fertilization process, i.e., the acrosome reaction, in a manner similar to that known for the control of stimulus/secretion coupling. Finally, the effects of cAMP on flagellar motility are mediated by protein phosphorylation while the effects of calcium on motility are also in part, mediated by effects on protein phosphorylation.  相似文献   

15.
Under in vitro conditions, incubation with 0.3% bovine serum albumin (BSA) and 1.8 mM CaCl2 induces mouse sperm capacitation and increases the consequential acrosome-reaction. The effect of mouse uterine 24p3 protein on such stimulated sperm has been investigated to understand the biological function of the 24p3 protein. Variations in the intracellular pH (pHi), calcium concentration, cAMP levels and tyrosine phosphorylation in cytosol were determined and on in vitro mouse fertilization was evaluated. The presence of 24p3 protein reduced the response of sperm to BSA and calcium by suppressing the elevation of intracellular pH, calcium uptake, cAMP accumulation and protein tyrosine phosphorylation of BSA/calcium-stimulated sperm and showed inhibitory effect on mouse in vitro fertilization. The results indicated the inhibition of the BSA-stimulated sperm acrosome reaction by 24p3 protein then suppressed sperm fertilization. We suggested that the 24p3 protein acts as an in vitro inhibitor of the acrosome reaction in BSA stimulated sperm and this might be an anti-fertilization factor in vitro.  相似文献   

16.
Phosphatidylinositol 3-kinase (PI3-K) plays an important role in cell survival in somatic cells and recent data pointed out a role for this kinase in sperm capacitation and acrosome reaction (AR). This study was undertaken to evaluate the role of PI3-K pathway on porcine spermatozoa capacitation, AR, and viability using two unrelated PI3-K inhibitors, LY294002 and wortmannin. In boar spermatozoa, we have identified the presence of PDK1, PKB/Akt, and PTEN, three of the main key components of the PI3-K pathway. Incubation of boar sperm in a capacitating medium (TCM) caused a significant increase in the percentage of capacitated (25 +/- 2 to 34 +/- 1% P < 0.05, n = 6) and acrosome reacted (1 +/- 1 to 11 +/- 1% P < 0.01, n = 6) spermatozoa compared with sperm in basal medium (TBM). Inhibition of PI3-K did affect neither the capacitation status nor AR nor protein p32 tyrosine phosphorylation of boar spermatozoa incubated in TBM or TCM. Boar sperm viability in TBM was significantly decreased by 40 and 20% after pretreatment with LY294002 or wortmannin, respectively. Similar results were observed after incubation of boar spermatozoa in TCM. Treatment of boar spermatozoa with the analog of cAMP, 8Br-cAMP significantly prevented the reduction on sperm viability. Our results provide evidence for an important role of the PI3-K pathway in the regulation of boar sperm viability and suggests that other signaling pathways different from PI3-K must be activated downstream of cAMP to contribute to regulation of sperm viability. Finally, in our conditions the PI3-K pathway seems not related with boar sperm capacitation or AR.  相似文献   

17.
The acrosome reaction of spermatozoa appears to be analogous to various somatic cell exocytotic events which involve cascade reactions, i.e., transmission of an external signal across the cell membrane resulting in activation of an "amplifier" enzyme and the generation of a second messenger. Using a synchronous acrosome reaction system (De Jonge et al., J. Androl., 10:232-239, '89a), it was found that analogues of the second-messenger cAMP, dibutyryl cAMP (dbcAMP) and 8-bromo cAMP, stimulated the acrosome reaction of capacitated spermatozoa. Additionally, treatment of spermatozoa with either xanthine or non-xanthine phosphodiesterase inhibitors induced a significant (P less than 0.05) increase in the percent acrosome reaction after a period of capacitation in comparison to untreated controls. These results indicate that analogues of cAMP or inhibitors which prevent cAMP hydrolysis can induce the human sperm acrosome reaction. Subsequent experiments were conducted to test whether the amplifier enzyme in the cascade reaction, adenylate cyclase, has a role in the acrosome reaction. Forskolin, an adenylate cyclase stimulator, caused a significant (P less than 0.01) increase in the percent acrosome reaction in comparison to controls. Modulators of adenylate cyclase--adenosine, 2'-0-methyladenosine, and 2',3'-dideoxyadenosine--significantly (P less than 0.01) inhibited the forskolin-induced acrosome reaction. dbcAMP was able to overcome the inhibition by adenosine. Two inhibitors of protein kinase A, the Walsh inhibitor and H-8, caused a significant (P less than 0.01) inhibition of the dbcAMP-induced acrosome reaction. Finally, in the absence of extracellular calcium, dbcAMP induced a significant (P less than 0.01) increase in the acrosome reaction in contrast to A23187. These results suggest that: 1) a molecular mechanism for the human sperm acrosome reaction involves the cAMP second-messenger system; i.e., activation of adenylate cyclase, the amplifier enzyme that produces cAMP, production of cAMP as a second messenger, and activation of cAMP-dependent kinase A; and that 2) activation of adenylate cyclase occurs after calcium influx.  相似文献   

18.
Second messengers are involved in sperm fertilizing potential, as both motility and the acrosome reaction are influenced by cAMP. Moreover, the activity of cyclic nucleotides is implicated in the appearance of tyrosine phosphorylated sperm proteins, which is associated with capacitation in the mammalian spermatozoa. Nevertheless, the involvement of the cAMP/protein kinase A (PK-A) pathway during pig sperm capacitation may be different from that observed in other mammals. The objective of the present study was to clarify the cAMP/PK-A pathway during the capacitation of porcine spermatozoa and to evaluate this impact on the p32 sperm tyrosine phosphoprotein appearance. The presence of p32 was assessed after incubating fresh pig sperm with IBMX/db-cAMP, H-89, a PK-A inhibitor or bistyrphostin, a tyrosine kinase inhibitor, in capacitating (CM) or non-capacitating conditions (NCM) by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. When pig spermatozoa were incubated in CM supplemented with H-89 (50 microM) or bistyrphostin (1.2 microM), capacitation decreased significantly (P < 0.001). The p32 sperm tyrosine phosphoprotein, previously shown to be associated with capacitation of porcine sperm though not necessarily an end point of this phenomenon, was not modulated by IBMX/db-cAMP (100 microM/1 mM), H-89 (50 microM) nor bistyrphostin (1.2 microM). Our results indicate, therefore, that pig sperm are regulated somewhat differently than as described for other mammals, because although the cAMP/PK-A and tyrosine kinase pathways are involved in capacitation, they do not influence the appearance of p32.  相似文献   

19.
We previously demonstrated that mouse sperm capacitation is accompanied by a time-dependent increase in protein tyrosine phosphorylation that is dependent on the presence of BSA, Ca2+, and NaHCO(3), all three of which are also required for this maturational event. We also demonstrated that activation of protein kinase A (PK-A) is upstream of this capacitation-associated increase in protein tyrosine phosphorylation. BSA is hypothesized to modulate capacitation through the removal of cholesterol from the sperm plasma membrane. In this report, we demonstrate that incubation of mouse sperm medium containing BSA results in a release of cholesterol from the sperm plasma membrane to the medium; release of this sterol does not occur in medium devoid of BSA. We next determined whether cholesterol release leads to changes in protein tyrosine phosphorylation. Blocking the action of BSA by adding exogenous cholesterol-SO-(4) to the BSA-containing medium inhibits the increase in protein tyrosine phosphorylation as well as capacitation. This inhibitory effect is overcome by (1) the addition of increasing concentrations of BSA at a given concentration of cholesterol-SO-(4) and (2) the addition of dibutyryl cAMP plus IBMX. High-density lipoprotein (HDL), another cholesterol binding protein, also supports the capacitation-associated increase in protein tyrosine phosphorylation through a cAMP-dependent pathway, whereas proteins that do not interact with cholesterol have no effect. HDL also supports sperm capacitation, as assessed by fertilization in vitro. Finally, we previously demonstrated that HCO-(3) is necessary for the capacitation-associated increase in protein tyrosine phosphorylation and demonstrate here, by examining the effectiveness of HCO-(3) or BSA addition to sperm on protein tyrosine phosphorylation, that the HCO-(3) effect is downstream of the site of BSA action. Taken together, these data demonstrate that cholesterol release is associated with the activation of a transmembrane signal transduction pathway involving PK-A and protein tyrosine phosphorylation, leading to functional maturation of the sperm.  相似文献   

20.
The maturation of various aspects of sperm function have been demonstrated in monkey and human epididymal sperm, including the ability to undergo the acrosome reaction. The present study aimed to investigate the maturational changes in non‐human primate sperm in the signal transduction mechanisms leading to the acrosome reaction involving cyclic AMP, Ca2+ influx, protein kinase C, and protein tyrosine phosphorylation. Sperm from the caput, corpus, and cauda epididymidis of cynomolgus monkeys were incubated in a complete medium for 2.5 hr, followed by 30 min stimulation with 1 mM dibutyryl cAMP and 1 mM caffeine, 50 μM 1,2‐dioctanoyl‐sn‐glycerol (DOG), and 50 μM Ca2+‐ionophore A23187. Quantitative Western blotting revealed little difference in tyrosine phosphorylated proteins among the caput, corpus, and cauda sperm without stimulation. Incubation with cAMP increased the amount of tyrosine phosphorylated proteins up to 10‐fold in the corpus and cauda sperm, but to a lower extent in the caput sperm. Ca2+‐ionophore attenuated the cAMP stimulation but had no effect on its own. Such responses in tyrosine phosphorylated proteins were in great contrast to the responses in the acrosome reaction, where A23187 was the strongest stimulant, resulting in induction of the reaction in 50 ± 5%, 11 ± 5%, and 8 ± 4% cauda, corpus and caput sperm, respectively (mean ± sem, n = 6). DOG and cAMP in combination induced acrosome reactions in about 10% of viable cells in the cauda and corpus but not caput sperm. Caput sperm responded to cAMP with increases in percentage motility without forward progression whereas cauda sperm displayed marked kinematic changes expected of hyperactivation. Comparisons of responses suggest that the major tyrosine phosphorylated proteins detected are unlikely to be involved immediately in the precipitation of the acrosome reaction, but more related to flagellar motion. Development of signal transduction pathways is part of the epididymal maturational process. Mol. Reprod. Dev. 54:194–202, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号