共查询到20条相似文献,搜索用时 15 毫秒
1.
A new family of mosaic proteins is defined by sequence analysis. The family is characterized by a 260 residue domain common to proteins of apparently diverse function and tissue specificity; sperm receptors Zp2 and Zp3, betaglycan (also called TGF-β type III receptor), uromodulin, as well as the major zymogen granule membrane protein (GP-2). The location of the common domain is similar with respect to putative transmembrane regions. The results lead to the hypothesis that this type of domain has a common tertiary structure and that there is a functional similarity in the recognition mechanism of the sperm receptor system and the TGF-β receptor complex. 相似文献
2.
Fibroblasts play a critical role in wound repair and in the development of fibrotic diseases, and transforming growth factor-β (TGF-β) has been shown to profoundly modulate fibroblast function. However, there is limited information on the TGF-β receptor types, isoform specificity, and complex formation in skin fibroblasts. Here, we report that normal adult human skin fibroblasts display two isoform-specific, cell surface glycosyl phosphatidylinositol (GPI)-anchored, TGF-β binding proteins in addition to the type I, II, and III TGF-β receptors. The identities of these proteins are confirmed on the basis of their affinity for TGF-β isoforms, immunoprecipitation with specific antireceptor antibodies, and other biochemical analyses. Immunoprecipitation results also indicated oligomeric complex formation between type I and II and between type II and III TGF-β receptors. Furthermore, by using affinity labeling and two-dimensional electrophoresis, we demonstrate the occurrence of type I and II heterodimers and type I homodimers of TGF-β receptors on these cells. Because the type I receptor does not bind TGF-β in the absence of type II receptor, these results indicate that one molecule of TGF-β induces the formation of a heterooligomeric complex containing more than one molecule each of type I and II TGF-β receptors on these cells. These cells respond to TGF-β by markedly down-regulating all five binding proteins and by potently augmenting DNA synthesis. These results allow the expansion of the proposed heteromeric TGF-β receptor signaling paradigm using mutantcells that are unresponsive to TGF-β and cell lines that have been transfected to overexpress these receptors, to include normal TGF-β-responsive cells. In addition, the definition of TGF-β receptor profiles in human skin fibroblasts provides important information for studying their alterations in these cells in various skin diseases. J. Cell. Physiol. 176:553–564, 1998. © 1998 Wiley-Liss, Inc. 相似文献
3.
TGF-β superfamily members signal through a heteromeric receptor complex to regulate craniofacial development. TGF-β type II receptor appears to bind only TGF-β, whereas TGF-β type I receptor (ALK5) also binds to ligands in addition to TGF-β. Our previous work has shown that conditional inactivation of Tgfbr2 in the neural crest cells of mice leads to severe craniofacial bone defects. In this study, we examine and compare the defects of TGF-β type II receptor (Wnt1-Cre;Tgfbr2fl/fl) and TGF-β type I receptor/Alk5 (Wnt1-Cre;Alk5fl/fl) conditional knockout mice. Loss of Alk5 in the neural crest tissue resulted in phenotypes not seen in the Tgfbr2 mutant, including delayed tooth initiation and development, defects in early mandible patterning and altered expression of key patterning genes including Msx1, Bmp4, Bmp2, Pax9, Alx4, Lhx6/7 and Gsc. Alk5 controls the survival of CNC cells by regulating expression of Gsc and other genes in the proximal aboral region of the developing mandible. We conclude that ALK5 regulates tooth initiation and early mandible patterning through a pathway independent of Tgfbr2. There is an intrinsic requirement for Alk5 signal in regulating the fate of CNC cells during tooth and mandible development. 相似文献
4.
5.
Identification of cytoplasmic proteins interacting with unliganded estrogen receptor α and β in human breast cancer cells 下载免费PDF全文
Roberta Tarallo Giorgio Giurato Maria Ravo Francesca Rizzo Giovanna Marchese Elena Alexandrova Angela Cordella Marc Baumann Tuula A. Nyman Alessandro Weisz Concetta Ambrosino 《Proteomics》2015,15(11):1801-1807
6.
The biologically active metabolite of vitamin D3, 1,25 (OH)2 D3, exerts important immunoregulatory effects in addition to being a central mediator of calcium/phosphate metabolism. Utilizing an interleukin 1 responsive murine T cell line and 125I-interleukin 1α, we show that 1,25 (OH)2 D3 (5,50 nM) enhanced 125I-interleukin 1α binding up to almost 2-fold over control. This 1,25 (OH)2 D3 effect occurred in a dose-dependent manner and was detectable after 24 h but not before 7 h of culture. Scatchard analysis of 125I-interleukin 1α binding data demonstrated that 1,25 (OH)2 D3 enhanced interleukin 1 receptor number without a significant change in affinity. The biologically less potent metabolite of vitamin D3, 25 (OH) D3, also augmented 125I-interleukin 1α binding but at steroid levels 2–3 log orders greater than 1,25 (OH)2 D3. This observation, combined with the presence of high-affinity 3H-1,25 (OH)2 D3 receptors (88 sites/cell, K = 0.45 nM) in cytosolic extracts, strongly suggests that the nuclear vitamin D receptor mediates this steroid's effect on interleukin 1 receptor expression. Based on the capacity of an anti-type 1 interleukin 1 receptor monoclonal antibody (35F5) to block 1,25 (OH)2 D3-enhanced 125I-interleukin 1α binding, we conclude that this steroid augments type 1 interleukin 1 receptor expression. When combined with interleukin 1, a cytokine that also impacts MD10 interleukin 1 receptor expression, 1,25 (OH)2 D3 enhanced interleukin 1 receptor expression. Northern blots hybridized with a 32P-type 1 interleukin 1 receptor cDNA probe show that 1,25 (OH)2 D3 enhanced type 1 interleukin 1 receptor steady state mRNA levels. Functionally, 1,25 (OH)2 D3 pretreatment augmented the MD10 proliferative response to suboptimal levels of interleukin 1 (< 100 fM interleukin 1α). These findings further support 1,25 (OH)2 D3's role as an immunoregulatory molecule and provides a possible mechanism by which this steroid could potentiate certain immune activities. 相似文献
7.
8.
Serpin A1 and the modulation of type I collagen turnover: Effect of the C‐terminal peptide 409–418 (SA1‐III) in human dermal fibroblasts 下载免费PDF全文
Caterina Cipriani Simona Pascarella Fosca Errante Beatrice Menicacci Lucia Magnelli Alessandra Mocali Paolo Rovero Lisa Giovannelli 《Cell biology international》2018,42(10):1340-1348
9.
Patsie Polly Carsten Carlberg John A. Eisman Nigel A. Morrison 《Journal of cellular biochemistry》1997,67(3):287-296
The receptors for retinoic acid (RA) and for 1α,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-α type I receptor (TNFαRI) gene identified a 3′ enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein–protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD. J. Cell. Biochem. 67:287–296, 1997. © 1997 Wiley-Liss, Inc. 相似文献
10.
11.
Yannick D. Benoit Carine Lussier Pierre‐Alexandre Ducharme Sophie Sivret Lynn M. Schnapp Nuria Basora Jean‐François Beaulieu 《Biology of the cell / under the auspices of the European Cell Biology Organization》2009,101(12):695-708
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine‐glycine‐aspartate tripeptide motif)‐dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal‐derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small‐hairpin RNA) approach showed that α8β1 plays important roles in RGD‐dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho‐associated kinase)‐dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK‐dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis. 相似文献
12.
13.
As a consequence of environmental protection and legal restrictions, increasing efforts are made to avoid radioactivity. One alternative is the labelling of ligands with chemiluminescent acridinium esters such as 2,6,-dimethyl-4-(N-succinimidyloxycarbonyl)phenyl 10-methylacridinium-9-carboxylate methosulphate (DMAE-NHS). When exposed to hydrogen peroxide in a basic solution, the DMAE-moiety decays with emission of a short-lasting chemiluminescent flash. With the goal of replacing the radioactive label in protein ligands with a DMAE label, and of increasing the efficiency by using microtitre plate technology for DMAE detection, we compared the receptor binding properties of iodinated interleukin-1α (125I-IL-1α), interleukin-1β (125I-IL-1β) and interferon-γ (125I-IFN-γ) with the corresponding DMAE-labelled ligands. The luminescence signal was assessed in a single-tube luminometer and in the prototype of a chemiluminescent microtitre plate reader. Derivatization of the three proteins with DMAE-N-hydroxy-succinimide resulted in photon yields of up to 100,000 counts per femtomole. As shown by Scatchard analysis, no significant loss of receptor binding affinity was observed, which might have been expected as a consequence of the chemical modification of the proteins. The use of DMAE labelling of proteins has the following advantages as compared to iodination: (i) the coupling reaction and binding assay can be performed in a normal laboratory, (ii) since there is no radiolysis, the DMAE-labelled proteins remain stable, (iii) the detection sensitivity may be improved as a consequence of higher specific activity of the DMAE label. Thus, the method could be used to replace the standard 125I label in receptor screening assays as well as other applications. 相似文献
14.
15.
16.
Actin cytoskeleton assembly regulates collagen production via TGF‐β type II receptor in human skin fibroblasts 下载免费PDF全文
Zhaoping Qin Gary J. Fisher John J. Voorhees Taihao Quan 《Journal of cellular and molecular medicine》2018,22(9):4085-4096
The dermal compartment of skin is primarily composed of collagen‐rich extracellular matrix (ECM), which is produced by dermal fibroblasts. In Young skin, fibroblasts attach to the ECM through integrins. During ageing, fragmentation of the dermal ECM limits fibroblast attachment. This reduced attachment is associated with decreased collagen production, a major cause of skin thinning and fragility, in the elderly. Fibroblast attachment promotes assembly of the cellular actin cytoskeleton, which generates mechanical forces needed for structural support. The mechanism(s) linking reduced assembly of the actin cytoskeleton to decreased collagen production remains unclear. Here, we report that disassembly of the actin cytoskeleton results in impairment of TGF‐β pathway, which controls collagen production, in dermal fibroblasts. Cytoskeleton disassembly rapidly down‐regulates TGF‐β type II receptor (TβRII) levels. This down‐regulation leads to reduced activation of downstream effectors Smad2/Smad3 and CCN2, resulting in decreased collagen production. These responses are fully reversible; restoration of actin cytoskeleton assembly up‐regulates TβRII, Smad2/Smad3, CCN2 and collagen expression. Finally, actin cytoskeleton‐dependent reduction of TβRII is mediated by induction of microRNA 21, a potent inhibitor of TβRII protein expression. Our findings reveal a novel mechanism that links actin cytoskeleton assembly and collagen expression in dermal fibroblasts. This mechanism likely contributes to loss of TβRII and collagen production, which are observed in aged human skin. 相似文献
17.
Cong Tong Kai Qu Guorong Wang Ruiting Liu Baojun Duan Xiaoqiang Wang Chang Liu 《Cell biology international》2020,44(10):2075-2085
DNA‐binding protein A (dbpA) is reported to be upregulated in many cancers and associated with tumor progress. The present study aimed to investigate the role of dbpA in 5‐fluorouracil (5‐FU)‐resistant and oxaliplatin (L‐OHP)‐resistant colorectal cancer (CRC) cells. We found that 5‐FU and L‐OPH treatment promoted the expression of dbpA. Enhanced dbpA promoted the drug resistance of SW620 cells to 5‐FU and L‐OHP. DbpA knockdown inhibited cell proliferation, induced cell apoptosis, and cell cycle arrested in SW620/5‐FU and SW620/L‐OHP cells. Besides, dbpA short hairpin RNA (shRNA) enhanced the cytotoxicity of 5‐FU and L‐OHP to SW620/5‐FU and SW620/L‐OHP cells. Meanwhile, dbpA shRNA inhibited the activation of the Wnt/β‐catenin pathway that induced by 5‐FU stimulation in SW620/5‐FU cells. Activation of the Wnt/β‐catenin pathway or overexpression of checkpoint kinase 1 (Chk1) abrogated the promoting effect of dbpA downregulation on 5‐FU sensitivity of CRC cells. Importantly, downregulation of dbpA suppressed tumor growth and promoted CRC cells sensitivity to 5‐FU in vivo. Our study indicated that the knockdown of dbpA enhanced the sensitivity of CRC cells to 5‐FU via Wnt/β‐catenin/Chk1 pathway, and DbpA may be a potential therapeutic target to sensitize drug resistance CRC to 5‐FU and L‐OHP. 相似文献
18.
19.
Leandro C. Cáceres Gustavo R. Bonacci María C. Sánchez Gustavo A. Chiabrando 《Journal of cellular biochemistry》2010,111(3):607-617
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP‐9) expression and protein secretion through the activation of MAPK‐ERK and NF‐κB signaling pathways. Previously, we demonstrated that activated α2‐macroglulin (α2M*) through the interaction with its receptor low‐density lipoprotein receptor‐related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK‐ERK1/2. In the present work, we examined whether α2M*/LRP1interaction could induce the MMP‐9 production in J774 and Raw264.7 macrophage‐derived cell lines. It was shown that α2M* promoted MMP‐9 expression and protein secretion by LRP1 in both macrophage‐derived cell lines, which was mediated by the activation of MAPK‐ERK1/2 and NF‐κB. Both intracellular signaling pathways activated by α2M* were effectively blocked by calphostin‐C, suggesting involvement of PKC. In addition, we demonstrate that α2M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA‐AM, the α2M*‐induced MAPK‐ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF‐κB, it was shown that the α2M*‐induced MMP‐9 protein secretion was inhibited, indicating that the MMP production promoted by the α2M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression. J. Cell. Biochem. 111: 607–617, 2010. © 2010 Wiley‐Liss, Inc. 相似文献