首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In ventricular myocardial cells of mouse, guinea-pig, dog, and monkey, mitochondria frequently form close associations with gap junctions, the two structures being separated by a space of 20 nm or less. Similar appositions are found in both the mature atria and the developing myocardium of the mouse. The gap junctions assume a variety of configurations with respect to the apposed mitochondria. These include profiles in which the gap junctions conform closely to the contours of mitochondria, as well as profiles in which finger-like sarcolemmal evaginations, composed entirely of gap junctions, extend longitudinally or transversely into an adjoining cell to envelop mitochondria. In mouse ventricular wall, over 40% of the length of gap junctions is juxtaposed to mitochondria, and strands of connecting material are often present in the interspace between the two structures. In addition, in freeze-fracture replicas, portions of mitochondria are found attached to areas of myocardial sarcolemma that contain gap-junctional particles. Since mitochondria are known to sequester Ca2+ ion, it is possible that the close association between mitochondria and gap junction may function to buffer the intracellular Ca2+ concentration near the gap junctions, and thereby regulate the ionic permeability of the gap junctions.  相似文献   

3.
Summary By the use of thin sections and freeze-fracture replicas the glomerular and tubular structures of the kidney of the frog (Rana esculenta) were studied with special reference to intercellular junctions.In the glomerulus the filtration barrier is of very variable thickness, and frequent tight and gap junctional contacts occur between podocyte processes.Although structurally less elaborate, the proximal tubule resembles its mammalian counterpart. In the initial part the tight junctions are relatively shallow but become very broad in the mid and distal portions of the proximal tubule. The proximal tubular cells are extensively linked by gap junctions. In some animals the shapes of the cells in the proximal and distal portions of the proximal tubule were markedly different.The distal tubule consists of two segments which differ mainly in the pattern of interdigitations and the structure of the zonulae occludentes. Similarities with the tight junctional morphology of the mammalian distal tubule are striking. In the first part of the distal tubule (diluting segment) a narrow band of parallel tight junctions is found closely resembling that found in the mammalian straight distal tubule; in the more distal part of the distal tubule, however, a broad band of anastomosing tight junctional strands exists, like the zonula occludens of the mammalian convoluted distal tubule.The connecting tubule displays cellular dimorphism: its wall contains a mixture of light and dark (flask) cells. The luminal and basolateral membranes of the flask cells are covered with numerous rod-shaped particles. The tight junctions of the connecting tubule are broad and increase in depth and number of strands along its length; they are typical of a very tight epithelium.In spite of several dissimilarities with phylogenetically younger kidneys our findings suggest that many structural principles of the mammalian kidney are also represented in the kidneys of amphibians. The structural-functional relationships are discussed.  相似文献   

4.
Summary The cell-body layer of the lamina ganglionaris of the housefly, Musca domestica, contains the perikarya of five types of monopolar interneuron (L1–L5) along with their enveloping neuroglia (Strausfeld 1971). We confirm previous reports (Trujillo-Cenóz 1965; Boschek 1971) that monopolar cell bodies in the lamina form three structural classes: Class I, Class II, and midget monopolar cells. Class-I cells (L1 and L2) have large (8–15 m) often crescentshaped cell bodies, much perinuclear cytoplasm and deep glial invaginations. Class-II cells (L3 and L4) have smaller perikarya (4–8 m) with little perinuclear cytoplasm and no glial invaginations. The midget monopolar cell (L5) resides at the base of the cell-body layer and has a cubshaped cell body. Though embedded within a reticulum of satellite glia, the L1–L4 monopolar perikarya and their immediately proximal neurites frequently appose each other directly. Typical arthropod (-type) gap junctions are routinely observed at these interfaces. These junctions can span up to 0.8 m with an intercellular space of 2–4 nm. The surrounding nonspecialized interspace is 12–20 nm. Freezefracture replicas of monopolar appositions confirm the presence of -type gap junctions, i.e., circular plaques (0.15–0.7 m diam.) of large (10–15 nm) E-face particles. Gap junctions are present between Class I somata and their proximal neurites, between Class I and Class II somata and proximal neurites, and between Class II somata. Intercartridge coupling may exist between such monopolar somata. The cell body and proximal neurite of L5 were not examined. We also find that Class I and Class II somata are extensively linked to their satellite glia via gap junctions. The gap width and nonjunctional interspace between neuron and glia are the same as those found between neurons. The particular arrangement and morphology of lamina monopolar neurons suggest that coupling or low resistance pathways between functionally distinct neurons and between neuron and glia are probably related to the metabolic requirements of the nuclear layer and may play a role in wide field signal averaging and light adaptation.  相似文献   

5.
Summary Musca and related flies have three main photoreceptor subsystems. The R1–6 group has short axons that terminate in the cartridges of the first optic neuropile, the lamina. The cartridges are bypassed by the longer axons of R7 and R8, which run together to terminate at different levels in the underlying medulla neuropile. The present account describes a shallow, previously unidentified zone in the lamina within which R7/8 make glancing contact with R1–6. At the distal border of the cartridge over no more than 3–4 m depth, the tangentially directed short axon of R6 squeezes between the pair from R7 and R8, forming quite large areas of mutual contact (approximately 7 m2). Less frequently, R1 is contacted. At least some of these sites contain smaller membrane specialisations indistinguishable from the more numerous gap junctions found more proximally that interconnect the terminals of R1–6. The R7/8 junctions with R6 are of comparable size (0.15 m2) and likewise possess symmetrical membrane densities. They provide proposed pathways for direct electrical interaction to account for observed electrical input from R7/8 to the R1–6 subsystem. In two cases R7/8 was possibly postsynaptic to R1–6 at a multiple-contact synapse, but even if functional, these sites were so rare that they are unlikely to have much operational significance.  相似文献   

6.
Summary The distribution of gap junctions in mature larvalDrosophila melanogaster wing discs was analyzed by means of quantitative electron microscopy. Gap junctions are non-randomly distributed in the proximal-distal disc axis and in the apical-basal cell axis of the epithelium. In the epithelial cells, the surface density, number and length of gap junctions are greatest in the apical cell region and distal disc region. The average gap junction surface density is 0.0572 m–1 and 2.77% of the lateral cell surface is composed of gap junctions. In the adepithelial cells, the gap junction surface density is 0.0005 m–1 and 0.06% of the cell surface is composed of gap junctions. No gap junctions were observed between epithelial cells and adepithelial cells. The absolute area of gap junctions was estimated in a proximal-distal strip of cells in the disc and is considerably less in the folded regions of the epithelium compared to the flat notum and wing pouch regions. The results are discussed with respect to pattern formation and growth control in imaginal discs.  相似文献   

7.
An electrophysiological monitoring strategy involving iontophoretic application of acetylcholine and intracellular recording has been employed in an investigation of the time course of cell fusion during myogenesis in vitro. Pairs of closely apposed, acetylcholine-sensitive rat or chick myogenic cells were continuously monitored. The onset of high-efficiency electrical coupling between members of such pairs corresponded to the moment at which cytoplasmic continuity was established. Ultrastructural analysis of the serial section record of two rat myotubes, fixed 2–3 min after fusion began, demonstrated the rapid disappearance of surface membranes in the fusion area at an average rate > 1 μm2 of membrane per second. Ten pairs of acetylcholine-sensitive cells were also observed to form lower-efficiency electrical connections. Such cells were not fused but were associated via specialized close membrane appositions resembling gap junctions. These membrane appositions apparently persist through the early events of cell fusion, for their remnants were found in recently fused cells. Possible roles of electrical coupling and of these close junctions in the fusion process are considered.  相似文献   

8.
Summary Oocyte-follicle cell gap junctions inTribolium occur in all oogenetic stages studied. During early previtellogenesis the junctions are found exclusively between lateral membranes of oocyte microvilli and the membrane of prefollicle cells. In late previtellogenesis and vitellogenesis the junctions are located between the tips of oocyte microvilli and the flat membranes of the follicle cells. During previtellogenesis gap junctions are infrequent, whereas in the phase of yolk accumulation their number increases considerably, exceeding 17 junctions/m2 of the follicle cell membrane. It could be shown by microinjection of a fluorescent dye that gap junctions are in a functional state during vitellogenesis. Possible roles of heterologous gap junctions in oogenesis are discussed.  相似文献   

9.
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.  相似文献   

10.
The density of gap junctions in four Drosophila melanogaster mutants with abnormal wing disc development has been determined using quantitative electron microscopy and compared with the gap junction density in wild-type wing discs. No appreciable differences relative to wild-type controls were found in the cell death mutant vestigial or in the mildly hyperplastic mutant lethal giant disc which could not be accounted for in terms of altered lateral plasma membrane surface density or as an extension of the gap junction growth which normally occurs during the third larval stage of development in wild-type wing discs. However, both the severely hyperplastic mutant l(3)c43hs1 and the neoplastic mutant lethal giant larva have significant reductions in the gap junction surface density, the number of gap junctions, and the gap junction areal fraction of the lateral plasma membrane compared with wild-type controls. These differences cannot be attributed to altered lateral plasma membrane surface densities which are not significantly different from wild-type control wing discs. The reduced gap junction density in severely hyperplastic and neoplastic wing discs suggests that alterations in the number or distribution of gap junctions may be as disruptive to normal growth and development as their complete absence.  相似文献   

11.
通过实验和临床观察幽门螺杆菌(Helicobacter pylori)对胃上皮细胞间隙连接超微结构的影响,从细胞间隙连接角度探讨H. pylori致癌机制.将不同H. pylori菌株与BGC-823细胞共培养24 h或 48 h,用原位固定与原位包埋法透射电镜观察细胞间隙连接超微结构变化.对70例胃癌患者,用快速尿素酶试验、碱性品红染色和14C尿素呼气实验检测H. pylori,PCR法检测H. pylori CagA基因,及透射电镜观察胃上皮细胞间隙连接超微结构变化.结果显示,未加H. pylori组BGC-823细胞可见较多细胞连接及连接复合体,加H. pylori各组细胞的连接数、单位周长连接数与单位周长连接长度均小于未加H. pylori组,而细胞间隙最小宽度大于未加H. pylori组(P < 0.001或P < 0.005),且CagA+ 的NCTC J99组、临床株GC 01组和NCTC 11639组细胞连接数、单位周长连接数均小于CagA- 的NCTC 12908组(P < 0.001或P < 0.05),NCTC J99组与临床株GC 01组细胞单位周长连接长度短于NCTC 12908组(P < 0.001).胃癌患者H. pylori感染组细胞连接数、单位周长连接数与单位周长连接长度均小于无H. pylori感染组,细胞间隙最小宽度大于无H. pylori感染组(P < 0.001),且CagA+ H. pylori感染者细胞连接数、单位周长连接数与单位周长连接长度均小于CagA- H. pylori感染者,细胞间隙最小宽度大于CagA- H. pylori感染者.上述结果表明,胃上皮细胞间隙连接改变与H. pylori感染,特别是CagA+ H. pylori感染有关.  相似文献   

12.
We have developed a simple dye transfer method, which allows the gap junction permeability of lens fiber cells to be quantified. Two fixable fluorescent dyes (Lucifer yellow and rhodamine-dextran) were introduced into peripheral lens fiber cells via mechanical damage induced by removing the lens capsule. After a defined incubation period, lenses were fixed, sectioned, and the distribution of the dye recorded using confocal microscopy. Rhodamine-dextran and Lucifer yellow both labeled the extracellular space between fiber cells and the cytoplasm of fiber cells that had been damaged by capsule removal. For the gap junctional permeable dye Lucifer yellow, however, labeling was not confined to the damaged cells and exhibited intercellular diffusion away from the damaged cells. The extent of dye diffusion was quantified by collecting radial dye intensity profiles from the confocal images. Effective diffusion coefficients (D eff ) for Lucifer yellow were then calculated by fitting the profiles to a series of model equations, which describe radial diffusion in a sphere. D eff is the combination of dye diffusion through the cytoplasm and through gap junction channels. To calculate the gap junctional permeability (P j ) an estimate of the cytoplasmic diffusion coefficient (D cyt = 0.7 × 10−6 cm2/sec) was obtained by observing the time course of dye diffusion in isolated elongated fiber cells loaded with Lucifer yellow via a patch pipette. Using this approach, we have obtained a value for P j of 31 × 10−5 cm/sec for fiber-fiber gap junctions. This value is significantly larger than the value of P j of 4.4 × 10−6 cm/sec reported by Rae and coworkers for epithelial-fiber junctions (Rae et al., 1996. J. Membrane Biol. 150:89–103), and most likely reflects the high abundance of gap junctions between lens fiber cells. Received: 1 December 1998/Revised: 22 February 1999  相似文献   

13.
Summary The morphology and genetical characteristics of a new dominant homoeotic mutation, called Distal into proximal (Dipr), are described. Dipr causes two main abnormalities, both of which are specific to distal regions of the adult appendages (i.e. the wing, haltere, legs, antenna, and proboscis); first that distal parts are reduced in size and second that the patterns found distally resemble those normally localised in more proximal parts. The mutation maps to the right arm of chromosome 3 and is associated with an inversion with breakpoints in 84D and 84F. Analysis of revertants of Dipr show that the right breakpoint of In(3R)Dipr is the one responsible for the mutant phenotype. Complementation analyses of Dipr revertants and dosage studies of Dipr with different doses of Dipr + indicate that the mutant is a hypermorph affecting the normal expression of a gene localised in 84F. The developmental significance of the mutation is discussed.  相似文献   

14.
The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans.  相似文献   

15.
Daily rhythms of changes in axon size and shape are seen in two types of monopolar cell—L1 and L2—that are unique cells within each of the modules or cartridges of the first optic neuropil or lamina in the fly's optic lobe. In the fruit fly Drosophila, L1 and L2's axons swell at the beginning of both day and night, with larger size increases occurring at the beginning of night. Later, they shrink during the day and night, respectively. Simultaneously, they change shape from an inverted conical form during the day to a cylindrical one at night. This is because the axonal cross section of L1 increases during the night, especially at proximal depths of the lamina, closest to the brain, whereas the axon of L2 increases in size at distal lamina depths. The cross‐sectional areas of the L1 cell and of an individual cartridge both change under constant darkness (DD), indicating the circadian origin of changes observed under day/night (LD) conditions. We sought to see whether such changes impart a net change to the entire lamina's volume or shape that is visible by light microscopy, but oscillations in the volume or the curvature of the whole lamina neuropil are found neither in LD nor in DD. These size changes are discussed in relation to previous findings in the housefly Musca, with respect to differences in L1 and L2 between the two species, and to differences in the time course of their circadian changes. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 77–88, 1999  相似文献   

16.
Summary Direct plant regeneration from flowering plant-derived lamina explants of Anthurium andraeanum Hort. cultivars Tinora Red and Senator was established on modified Murashige and Skoog (MS) medium. Cultivar difference, stage of source lamina and the position of explant in lamina, medium pH, and type of growth regulators significantly influenced direct plant regeneration. Explants from young brown lamina were superior to young green lamina. The half-strength MS medium containing 1.11 μM N6-benzyladenine (BA), 1.14 μM indole-3-acetic acid, and 0.46 μM kinetin at pH 5.5 was most effective for induction of shoot formation. Explants from the proximal end of the source lamina gave rise to a higher number of shoots compared to the mid and distal regions. Cultivar Tinora Red was more regenerative than Senator in terms of number of shoots per explant. The use of a lower BA concentration (0.44 μM) was essential for callus-free shoot multiplication during subculture. Regenerated shoots could be induced to form roots on half-strength MS medium supplemented with 0.54 μM α-naphthaleneacetic acid and 0.93 μM kinetin. More than 300 plantlets of each eultivar were harvested from a single source lamina within 200 d of culture. Most plantlets (95%) survived after acclimation in soil.  相似文献   

17.
Summary Ultrastructural examination of the podium of the asteroid echinoderm Stylasterias forreri reveals that cells of the coelomic epithelium and cells of the retractor muscle are, in fact, components of a single epithelium. The basal lamina of this unified epithelium adjoins the connective tissue layer of the podium.The principal epithelial cells in the coelomic lining are the flagellated adluminal cells and the myofilament-bearing retractor cells. Adluminal cells interdigitate extensively with each other and form zonular intermediate and septate junctions at their apicolateral surfaces. The adluminal cells emit processes which extend between the underlying retractor cells and terminate on the basal lamina of the epithelium. Retractor cells exhibit unregistered arrays of thick and thin myofilaments. The periphery of the retractor cell is characteristically thrown into keel-like folds which interdigitate with the processes of neighboring cells. Specialized intermediate junctions bind the retractor cells to each other and anchor the retractor cells to the basal lamina of the epithelium. The retractor cells are not surrounded by external laminae or connective tissue envelopes.It is concluded that the coelomic lining in the podium of S. forreri is a bipartite epithelium and that the retractor cells of the podium are myoepithelial in nature. There are no detectable communicating (gap) junctions between the epithelial cells of the coelomic lining.This investigation was supported by general research funds from the Department of Anatomy of the University of Southern California (R.L.W.) and by Research Operating Grant A0484 from the Natural Sciences and Engineering Research Council of Canada (M.J.C.). Ms. Aileen Kuda and Mr. Steve Osborne provided technical assistance. A portion of this study was conducted at the Friday Harbor Laboratories of the University of Washington, and the authors gratefully acknowledge the cooperation and hospitality of the Director, Dr. A.O. Dennis Willows  相似文献   

18.
Summary Transfer-deficient derivatives of pDU202 (a Tcs deletion mutant of R100-1) caused by the insertion of Tn10 into the R factor's transfer genes have been described previously. Tetracyline-sensitive mutants of four of these were selected. In the majority of cases the Tcs mutation was caused by a deletion of the Tcr genes which was often accompanied either by a deletion of some of the flanking transfer genes or by a secondary mutation which was probably an inversion. A number of preferred end points for the deletions and inversions occur in the transfer operon of pDU202. Analysis of the mutants by complementation tests with Flac tra elements confirmed that the order of genes in the promoter distal part of the tra region of pDU202 is traKBCFHGSD and traI.  相似文献   

19.
Gap junction-enriched fractions were prepared from larvae of the tobacco budworm Heliothis virescens using the NaOH procedure in the presence or absence of protease inhibitors and were analyzed by SDS-PAGE, immunoblotting and EM immunocytochemistry. Protease inhibitor fractions contained a 48-kDa protein in addition to the 10 proteins in fractions with and without inhibitors. Three polyclonal antibodies were used as probes for gap junction plaques and proteins: R16, against an 40-kDa candidate gap junction protein from Drosophila melanogaster; R17, against the 40-kDa candidate gap junction protein from H. virescens; and R18AP, an affinity purified antibody against a consensus sequence of N-terminal amino acids 2–21 of the H. virescens 40-kDa protein. R16, R17, and R18AP stain the 40- and 48-kDa proteins, R16 and R18AP stain a 64-kDa protein, and R16 stains an 30-kDa protein in the absence of inhibitors. Inclusion of protease inhibitors had no effect on gap junction ultrastructure. R16 and R17 label gap junction plaques in crude membrane and NaOH fractions, whereas R18AP exhibits only a low level of reactivity with gap junctions in crude membrane fractions and none with gap junctions in NaOH fractions. The results show that the 30-, 40-, 48- and 64-kDa proteins are immunologically related and are associated with gap junctions in H. virescens, the N-terminus of the 40-kDa protein is relatively inaccessible or easily lost, and the 48-kDa protein is protease-sensitive.  相似文献   

20.
The use of resistant varieties is an important tool in the management of late blight, which threatens potato production worldwide. Clone MaR8 from the Mastenbroek differential set has strong resistance to Phytophthora infestans, the causal agent of late blight. The F1 progeny of a cross between the susceptible cultivar Concurrent and MaR8 were assessed for late blight resistance in field trials inoculated with an incompatible P. infestans isolate. A 1:1 segregation of resistance and susceptibility was observed, indicating that the resistance gene referred to as R8, is present in simplex in the tetraploid MaR8 clone. NBS profiling and successive marker sequence comparison to the potato and tomato genome draft sequences, suggested that the R8 gene is located on the long arm of chromosome IX and not on the short arm of chromosome XI as was suggested previously. Analysis of SSR, CAPS and SCAR markers confirmed that R8 was on the distal end of the long arm of chromosome IX. R gene cluster directed profiling markers CDPSw54 and CDPSw55 flanked the R8 gene at the distal end (1 cM). CDPTm21-1, CDPTm21-2 and CDPTm22 flanked the R8 gene on the proximal side (2 cM). An additional co-segregating marker (CDPHero3) was found, which will be useful for marker assisted breeding and map based cloning of R8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号