首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 13 forms of human liver glutathione S-transferases (GST) (Vander Jagt, D. L., Hunsaker, L. A., Garcia, K. B., and Royer, R. E. (1985) J. Biol. Chem. 260, 11603-11610) are composed of subunits in two electrophoretic mobility groups: Mr = 26,000 (Ha) and Mr = 27,500 (Hb). Preparations purified from the S-hexyl GSH-linked Sepharose 4B affinity column revealed three additional peptides at Mr = 30,800, Mr = 31,200, and Mr = 32,200. Immunoprecipitation of human liver poly(A) RNAs in vitro translation products revealed three classes of GST subunits and related peptides at Mr = 26,000, Mr = 27,500, and Mr = 31,000. The Mr = 26,000 species (Ha) can be precipitated with antisera against a variety of rat liver GSTs containing Ya, Yb, and Yc subunits, whereas the Mr = 27,500 species (Hb) can be immunoprecipitated most efficiently by antiserum against the anionic isozymes as well as a second Yb-containing isozyme (peak V) from the rat liver. The Mr = 31,000 band can be immunoprecipitated by antisera preparations against sheep liver, rat liver, and rat testis isozymes. Human liver GSTs do not have any subunits of the rat liver Yc mobility. Antiserum against the human liver GSTs did not cross-react with the Yc subunits of rat livers or brains in immunoblotting experiments. The human liver GST cDNA clone, pGTH1, selected human liver poly(A) RNAs for the Ha subunit(s) in the hybrid-selected in vitro translation experiments. Southern blot hybridization results revealed cross-hybridization of pGTH1 with the Ya, Yb, and Yc subunit cDNA clones of rat liver GSTs. This sequence homology was substantiated further in that immobilized pGTH1 DNA selected rat liver poly(A) RNAs for the Ya, Yb, and Yc subunits with different efficiency as assayed by in vitro translation and immunoprecipitation. Therefore, we have demonstrated convincingly that sequence homology as well as immunological cross-reactivity exist between GST subunits from several rat tissues and the human liver. Also, the multiple forms of human liver GSTs are most likely encoded by a minimum of three different classes of mRNAs. These results suggest a genetic basis for the subunit heterogeneity of human liver GSTs.  相似文献   

2.
Multiple human liver GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Human liver GSTs are composed of at least two classes of subunits, Ha (Mr = 26,000) and Hb (Mr = 27,500). Immunological cross-reactivity and nucleic acid hybridization studies revealed a close relationship between the human Ha subunit and rat Ya, Yc subunits and their cDNAs. We have determined the nucleotide sequence of the Ha subunit 1 cDNA, pGTH1. The alignments of its coding sequence with the rat Ya and Yc cDNAs indicate that they are approximately 80% identical base-for-base without any deletion or insertion. Regions of sequence homology (greater than 50%) have also been found between pGTH1 and a corn GST cDNA and rat GST cDNAs of the Yb and Yp subunits. Among the 62 highly conserved amino acid residues of the rat GST supergene family, 56 of them are preserved in the Ha subunit 1 coding sequences. Comparison of amino-acid replacement mutations in these coding sequences revealed that the percentage divergence between the rat Ya and Yc genes is more than that between the Ha and Ya or Ha and Yc genes.  相似文献   

3.
H C Lai  G Grove    C P Tu 《Nucleic acids research》1986,14(15):6101-6114
We have isolated a Yb-subunit cDNA clone from a GSH S-transferase (GST) cDNA library made from rat liver polysomal poly(A) RNAs. Sequence analysis of one of these cDNA, pGTR200, revealed an open reading frame of 218 amino acids of Mr = 25,915. The deduced sequence is in agreement with the 19 NH2-terminal residues for GST-A. The sequence of pGTR200 differs from another Yb cDNA, pGTA/C44 by four nucleotides and two amino acids in the coding region, thus revealing sequence microheterogeneity. The cDNA insert in pGTR200 also contains 36 nucleotides in the 5' noncoding region and a complete 3' noncoding region. The Yb subunit cDNA shares very limited homology with those of the Ya or Yc cDNAs, but has relatively higher sequence homology to the placental subunit Yp clone pGP5. The mRNA of pGTR200 is not expressed abundantly in rat hearts and seminal vesicles. Therefore, the GST subunit sequence of pGTR200 probably represents a basic Yb subunit. Genomic DNA hybridization patterns showed a complexity consistent with having a multigene family for Yb subunits. Comparison of the amino acid sequences of the Ya, Yb, Yc, and Yp subunits revealed significant conservation of amino acids (approximately 29%) throughout the coding sequences. These results indicate that the rat GSTs are products of at least four different genes that may constitute a supergene family.  相似文献   

4.
Glutathione-S-transferases (GSTs) are ubiquitous enzymes that play a key role in stress tolerance and cellular detoxification. The GST gene GsGST14 selected from the gene expression profiles of Glycine soja under alkaline stress was transformed into alfalfa (Medicago sativa L.). Transgenic alfalfa plants showed 1.73–1.99 times higher GST activity than wild-type plants. Transgenic alfalfa grew well in the presence of 100 mM NaHCO3, while wild-type plants exhibited chlorosis and stunted growth, even death. There were marked changes in malondialdehyde content and relative membrane permeability caused by alkaline stress in non-transgenic lines compared to transgenic lines. The results indicate that the gene GsGST14 could enhance alkaline resistance in transgenic alfalfa.  相似文献   

5.
6.
ABSTRACT

Multi-drug resistance due in part to membrane pumps such as P-glycoprotein (Pgp) is a major clinical problem in human cancers. We tested the ability of liposomally-encapsulated daunorubicin (DR) to overcome resistance to this drug. A widely used breast carcinoma cell line originally selected for resistance in doxorubicin (MCF7ADR) was 4-fold resistant to DR compared to the parent MCF7 cells (IC50 79 nM vs. 20 nM). Ovarian carcinoma cells (SKOV3) were made resistant by retroviral transduction of MDR1 cDNA and selection in vinblastine. The resulting SKOV3MGP1 cells were 130-fold resistant to DR compared to parent cells (IC50 5700 nM vs. 44 nM). Small-cell lung carcinoma cells (H69VP) originally selected for resistance to etoposide were 6-fold resistant to DR compared to H69 parent cells (IC50 180 nM vs. 30 nM). In all three cases, encapsulation of DR in liposomes as Daunoxome (Gilead) did not change the IC50 of parent cells relative to free DR. However, liposomal DR overcame resistance in MCF7ADR breast carcinoma cells (IC50 20 nM), SKOV3MGP1 ovarian carcinoma cells (IC50 237 nM) and H69VP small-cell lung carcinoma cells (IC50 27 nM). Empty liposomes did not affect the IC50 for free DR in the three resistant cell lines, nor did empty liposomes affect the IC50 for other drugs that are part of the multi-drug resistance phenotype (etoposide, vincristine) in lung carcinoma cells. These data indicate the possible value of liposomal DR in overcoming Pgp-mediated drug resistance in human cancer.  相似文献   

7.
We have synthesized the 5,6-LTA4, 8,9-LTA4, and 14,15-LTA4 as methyl esters by an improved biomimetic method with yields as high as 70-80%. We have investigated the catalytic efficiency of the purified cytosolic glutathione S-transferase (GST) isozymes from rat liver in the conversion of these leukotriene epoxides to their corresponding LTC4 methyl esters. Among various rat liver GST isozymes, the anionic isozyme, a homodimer of Yb subunit, exhibited the highest specific activity. In general, the isozymes containing the Yb subunit showed better activity than the isozymes containing the Ya and/or Yc subunits. Interestingly, all three different LTA4 methyl esters gave comparable specific activities with a given GST isozyme indicating that regiospecificity of GSTs was not the factor in determining their ability to catalyze this reaction. Surprisingly, purified GSTs from sheep lung and seminal vesicles showed little activity toward these leukotriene epoxides, indicating a lack of the counterpart of rat liver anionic GST isozyme in these tissues.  相似文献   

8.
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S‐transferase (GST) activity. In previous research, two atrazine‐resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine‐glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity‐purified fractions compared to an atrazine‐sensitive population (WCS). One‐dimensional electrophoresis of these fractions displayed an approximate 26‐kDa band, typical of GST subunits. Several phi‐ and tau‐class GSTs were identified by LC‐MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi‐class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.  相似文献   

9.
10.
11.
Expression of glutathione S-transferases in rat brains   总被引:3,自引:0,他引:3  
The tissue-specific expression of glutathione S-transferases (GSTs) in rat brains has been studied by protein purification, in vitro translation of brain poly(A) RNAs, and RNA blot hybridization with cDNA clones of the Ya, Yb, and Yc subunit of rat liver GSTs. Four classes of GST subunits are expressed in rat brains at Mr 28,000 (Yc), Mr 27,000 (Yb), Mr 26,300, and Mr 25,000. The Mr 26,3000 species, or Y beta, has an electrophoretic mobility between that of Ya and Yb, similar to the liver Yn subunit(s) reported by Hayes (Hayes, J. D. (1984) Biochem. J. 224, 839-852). RNA blot hybridization of brain poly(A) RNAs with a liver Yb cDNA probe revealed two RNA species of approximately 1300 and approximately 1100 nucleotides. The band at approximately 1300 nucleotides was absent in liver poly(A) RNAs. The Mr 25,000 species, or Y delta, can be immunoprecipitated by antisera against rat heart and rat testis GSTs, but not by antiserum against rat liver GSTs. Therefore, the Y delta subunit may be related to the "Mr 22,000" subunit reported by Tu et al. (Tu, C.-P.D., Weiss, M.J., Li, N., and Reddy, C. C. (1983) J. Biol. Chem. 258, 4659-4662). The abundant liver GST subunits, Ya, are not expressed in rat brains as demonstrated by electrophoresis of purified brain GSTs and a lack of isomerase activity toward the Ya-specific substrate, delta 5-androstene-3,17-dione. This is apparently because of the absence of Ya mRNA expression prior to RNA processing. The data on the preferential expression of Yc subunits in rat brains, together with the differential phenobarbital inducibility of the Ya subunit(s) in rat liver reported by Pickett et al. (Pickett, C. B., Donohue, A. M., Lu, A. Y. H., and Hales, B. F. (1982) Arch. Biochem. Biophys. 215, 539-543), suggest that the Ya and Yc genes for rat GSTs are two functionally distinct gene families even though they share 68% DNA sequence homology. The expression of multiple GSTs in rat brains suggests that GSTs may be involved in physiological processes other than xenobiotics metabolism.  相似文献   

12.
Abstract

We have produced a stable insect cell line derived from Spodoptera frugiperda (Sf9) cells expressing a cDNA encoding a β-subunit of the Lymnaea stagnalis GABAA receptor. The cDNA was randomly integrated into the insect cell genome under the control of a baculovirus immediate early gene (IE-1) promoter. Stable cell lines were established by transformation of Sf9 cells with the expression vector pIEK1.LGβ1 together with a plasmid encoding a selectable marker which confers neomycin (G418) resistance. Following growth in the presence of G418, neomycin resistant clones were selected, amplified and analysed for the presence of functional GABA-gated chloride channels. Electrophysiological analysis of one cell line showed the presence of a picrotoxin-sensitive chloride channel not present in control Sf9 cells. These channels were also sensitive to GABA, albeit at relatively high (mM) concentrations.  相似文献   

13.
《Free radical research》2013,47(1-3):137-144
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.

Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells.  相似文献   

14.
Glutathione (GSH) and enzymes related to this antioxidant molecule are often overexpressed in tumor cells and may contribute to drug resistance. Blockade of glutathione transferases (GSTs) has been proposed to potentiate the efficacy of chemotherapeutic drugs in cancer. The aim of this study was to evaluate the effect of chlorophyllin that has antioxidant properties, and also interferes with the activity of GST P1-1, on breast cancers in vitro and in vivo. The in vivo studies were conducted using an N-methyl- N-nitrosourea (MNU)-induced chemical carcinogenesis model in laboratory rats. DNA damage, GST activity, and GSH levels were determined in liver and tumor tissues. Treatment with chlorophyllin increased the GSH levels in the liver and significantly decreased DNA damage in the blood, liver, and tumor tissues. Even though tumorigenesis was delayed in rats receiving chlorophyllin before MNU injections, once the tumors emerged, the progression of tumor appeared to be faster than in the animals that received the carcinogen only. Out of nine breast cell lines, GST P1-1 expression was detected in MCF-12A, MDA-MB-231, and HCC38. Concomitant incubation with chlorophyllin and docetaxel did not significantly affect cell proliferation and viability. Chlorophyllin displayed genoprotective effects that initially delayed tumorigenesis. However, once the tumors were established, it may act as a promoter that facilitates tumor growth, potentially by a mechanism independent of cell proliferation and viability. Our results underline the pros and cons of antioxidant treatment in cancer, even if it has a capacity to inhibit GST P1-1.  相似文献   

15.
Five glutathione S-transferase (GST, EC 2.5.1.18) forms were purified from human liver by S-hexylglutathione affinity chromatography followed by chromatofocusing, and their subunit structures and immunological relationships to rat liver glutathione S-transferase forms were investigated. They were tentatively named GSTs I, II, III, IV and V in order of decreasing apparent isoelectric points (pI) on chromatofocusing. Their subunit molecular weights assessed on SDS-polyacrylamide gel electrophoresis were 27 (Mr X 10(-3)), 27, 27.7,27 and 26, respectively, (26, 26, 27, 26, and 24.5 on the assumption of rat GST subunit Ya, Yb and Yc as 25, 26.5 and 28, respectively), indicating that all forms are composed of two subunits identical in size. However, it was suggested by gel-isoelectric focusing in the presence of urea that GSTs I and IV are different homodimers, consisting of Y1 and Y4 subunits, respectively, which are of identical Mr but different pI, while GST II is a heterodimer composed of Y1 and Y4 subunits. This was confirmed by subunit recombination after guanidine hydrochloride treatment. GST III seemed to be identical with GST-mu with regard to Mr and pI. GST V was immunologically identical with the placental GST-pi. On double immunodiffusion or Western blotting using specific antibodies to rat glutathione S-transferases, GST I, II and IV were related to rat GST 1-1 (ligandin), GST III(mu) to rat GST 4-4 (D), and GST V (pi) to rat GST 7-7 (P), respectively. GST V (pi) was increased in hepatic tumors.  相似文献   

16.
Abstract: The toxicological and biochemical characteristics of glutathione S‐transferases (GSTs) in the resistant and susceptible strains of Liposcelis bostrychophila were investigated. The two resistant strains were the dichlorvos‐resistant strain (DDVP‐R) and PH3‐resistant strain (PH3‐R), and the resistance factors were 22.36 and 4.51, respectively. Compared with their susceptible counterparts, the activities per insect and specific activities of GSTs in DDVP‐R and PH3‐R were significantly higher. The apparent Michaelis–Menten constant values (Km) for 1‐chloro‐2,4‐dinitrobenzene (CDNB) were obviously lower in DDVP‐R and PH3‐R (i.e. lower Km values, 1.5625 mm for DDVP‐R and 0.6230 mm for PH3‐R) when compared with their susceptible counterpart (Km = 3.5520), indicating a higher affinity to the substrate CDNB in resistant strains. In contrast, the catalytic activity of GSTs towards CDNB in the susceptible strain was significantly higher than those in resistant strains. It was noticeable that when reduced glutathione (GSH) was used as substrate, GSTs from resistant strains both indicated a significantly declined affinity. For the catalytic activity of GSTs towards GSH, only the Vmax value in DDVP‐R increased significantly compared with that from the susceptible strain, suggesting an overexpression of GST in this resistant strain. The inhibition kinetics of insecticides to GSTs in vitro revealed that dichlorvos and paraoxon possessed excellent inhibition effects on GSTs. The susceptible strain showed higher sensitivity (I50 = 0.9004 mm ) to dichlorvos than DDVP‐R and PH3‐R (higher I50s, 8.0955 mm for DDVP‐R and 9.3346 mm for PH3‐R). As for paraoxon, there was a similar situation. The resistant strains both suggested a higher I50 (1.8735 mm for DDVP‐R, and 0.4291 mm for PH3‐R) compared with the susceptible strain (0.2943 mm ). These suggested that an elevated detoxification ability of GSTs developed in the resistant strains.  相似文献   

17.
18.
Glutathione S-transferases (GSTs: EC2.5.1.18) are a superfamily of multifunctional dimeric enzymes that catalyze the conjugation of glutathione (GSH) to electrophilic chemicals. In most animals and in humans, GSTs are the principal enzymes responsible for detoxifying the mycotoxin aflatoxin B1 (AFB1) and GST dysfunction is a known risk factor for susceptibility towards AFB1. Turkeys are one of the most susceptible animals known to AFB1, which is a common contaminant of poultry feeds. The extreme susceptibility of turkeys is associated with hepatic GSTs unable to detoxify the highly reactive and electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO). In this study, comparative genomic approaches were used to amplify and identify the α-class tGST genes (tGSTA1.1, tGSTA1.2, tGSTA1.3, tGSTA2, tGSTA3 and tGSTA4) from turkey liver. The conserved GST domains and four α-class signature motifs in turkey GSTs (with the exception of tGSTA1.1 which lacked one motif) confirm the presence of hepatic α-class GSTs in the turkey. Four signature motifs and conserved residues found in α-class tGSTs are (1) xMExxxWLLAAAGVE, (2) YGKDxKERAxIDMYVxG, (3) PVxEKVLKxHGxxxL and (4) PxIKKFLXPGSxxKPxxx. A BAC clone containing the α-class GST gene cluster was isolated and sequenced. The turkey α-class GTS genes genetically map to chromosome MGA2 with synteny between turkey and human α-class GSTs and flanking genes. This study identifies the α-class tGST gene cluster and genetic markers (SNPs, single nucleotide polymorphisms) that can be used to further examine AFB1 susceptibility and resistance in turkeys. Functional characterization of heterologously expressed proteins from these genes is currently underway.  相似文献   

19.
20.
Glutathione S-transferases (GSTs) are a family of multi-functional enzymes that play critical roles in the detoxification of xenobiotics and the protection of tissues against oxidative damage. GSTs are important enzymes in plant responses to a number of environmental stresses including herbicides and pathogen attack. Ocs elements are a group of related, 20 bp promoter elements which have been exploited by some plant pathogens to express genes in plants. Ocs elements have also been found to regulate the expression of a plant GST promoter. An Arabidopsis GST gene, called GST6 has been isolated. GST6 expression is under tissue-specific control and is induced following treatment with auxin, salicylic acid and H2O2. The GST6 promoter contains a binding site for two Arabidopsis o cs element b inding f actors (OBF), that has some sequence homology to ocs element sequences. Interestingly, OBP1 (O BF b inding p rotein), a DNA-binding protein that was isolated by screening an Arabidopsis cDNA library with a labeled OBF protein as a probe, binds next to the OBF-binding site on the GST6 promoter. OBP1 was able to significantly stimulate the binding of OBF proteins to the GST6 promoter, raising the possibility that interactions between the OBP1 and OBF proteins may be important for GST6 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号