首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN (β-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.  相似文献   

2.
Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome‐ECM interactions is limited. Here, we investigate whether the exosome‐associated lysyl oxidase family member lysyl oxidase‐like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)‐derived exosomes, placing it in direct vicinity of the ECM. It is up‐regulated twofold in EC‐derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome‐producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC‐derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia‐regulated focal ECM remodelling, a key process in both fibrosis and wound healing.  相似文献   

3.
Immunochemical and electron microscopic characterization of rat myocardium was conducted 2 h and 3 weeks after a single injection of isoproterenol in rats. The relative content of several myospecific proteins (KRP – kinase-related protein, desmin), cytoskeletal proteins (tubulin, vinculin, myosin light chain kinase – MLCK) and extracellular matrix protein fibronectin was determined by immunoblotting. Two hours after injection of 50 mg/kg isoproterenol a destruction of some cardiomyocytes, contracture of myofibrils and mild edema of intercellular space was observed. The content of all the studied proteins except KRP decreased below control levels. This situation sustained 3 weeks after injection and paralleled alterations in cardiomyocyte ultrastructure. Areas of myofibrillar contracture and lysis were noted, glycogen granules were sparse; mitochondria contained arrow-like inclusions that are characteristic for calcium overload, also huge mitochondria contacting each other by specialized intermitochondrial contacts were detected. Clumps of unripe elastic fibers in enlarged intercellular space were combined with increased deposition of collagens type I and III forming areas of fibrosis. The smaller dosage of isoproterenol (10 mg/kg) rendered no significant damage in the acute postinjection period but 3 weeks later it induced the thickening of extracellular matrix around cardiac cells and the increase in KRP and tubulin content by 26 and 32%, correspondingly. MLCK levels remained depressed throughout the experiment. The rise in KRP expression was also observed after the addition of isoproterenol to cultured chicken embryo cardiomyocytes. Obtained results indicate that even a single injection of isoproterenol creates long lasting structural alterations in cardiac muscle accompanied by the increased expression of extracellular matrix proteins and several sarcoplasmic proteins apparently involved in hypertrophic response of cardiomyocytes.  相似文献   

4.
Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-β activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-β1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-β1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-β bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.  相似文献   

5.
 Lysyl oxidase is the extracellular enzyme that catalyzes oxidative deamination of peptidyl-lysine residues in elastin precursors, and lysine and hydroxylysine residues in collagen precursors to form peptidyl-aldehydes. These aldehydes then spontaneously condense to crosslink collagen and elastin and thereby allow the formation of a mature and functional extracellular matrix. In the present study, cryosections made from aseptic immune-induced periapical lesions experimentally generated in laboratory rats were examined by immunohistochemistry to investigate whether lysyl oxidase protein expression is altered in inflamed oral tissues. Periapical lesions are experimentally induced endodontic lesions of tooth roots. In addition, the effect of administration of a mixture of fibroblast growth factor (FGF)-2 and insulin-like growth factor (IGF)-1 into these lesions on lysyl oxidase expression was determined. Lysyl oxidase expression was found to be increased in non-mineralized connective tissue adjacent to inflamed lesions. Morphometric analyses indicated that maximum lysyl oxidase expression occurred at a discrete distance from the lesion not exceeding 350 μm from the inflammatory cells. Staining was associated with mesenchymal cells with a fibroblastic morphology. No lysyl oxidase staining was found near teeth where no lesion was induced. Application of a mixture of FGF-2 and IGF-1 resulted in a further twofold increase in lysyl oxidase expression. These results provide a new in vivo model to study lysyl oxidase regulation, and suggest that inflammatory cells may control lysyl oxidase expression in oral tissues, possibly by a mechanism involving secretion of cytokines and other factors, probably contributing to the regulation of extracellular matrix accumulation. Accepted: 19 December 1998  相似文献   

6.
Lysyl oxidase highly purified from calf aorta was found to be a potent chemotactic agent for unstimulated human peripheral blood mononuclear cells, determined in in vitro assays in Boyden chambers. A typical chemotactic bell-shaped curve was observed, with a maximal migratory response of 237% of control occurring at 10−10 M lysyl oxidase. The chemotactic response was prevented by prior heat inactivation of the enzyme, by treatment of the enzyme with β-aminopropionitrile or ethylenediamine, which are active site-directed inhibitors of lysyl oxidase, and by a competing, lysine-containing peptide substrate of lysyl oxidase. The chemoattractant reponse to lysyl oxidases was characterized by both chemokinetic and chemotactic components. These results raise the possibility that extracellular lysyl oxidase may have important roles to play in biology in addition to its established function in the crosslinking of elastin and collagen.  相似文献   

7.
The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.  相似文献   

8.
Lysyl oxidase activity is critical for the assembly and cross-linking of extracellular matrix proteins, such as collagen and elastin. Moreover, lysyl oxidase activity is sensitive to changes in copper status and genetic perturbations in copper transport, e.g., mutations in the P-type ATPase gene, ATP7A, associated with cellular copper transport. Lysyl oxidase may also serve as a vehicle for copper transport from extracellular matrix cells. Herein, we demonstrate that sufficient lysyl oxidase functional activity is present in the rat embryo at gestation day (GD) 9 to be detected in conventional enzyme assays. Estimation of embryonic lysyl oxidase functional activity, however, required partial purification in order to remove inhibitors. From GD 9 to GD 15, lysyl oxidase activity was relatively constant when expressed per unit of protein or DNA. In contrast, the steady-state levels of lysyl oxidase and ATP7A mRNA, measured by RT-PCR and expressed relative to total RNA and cyclophilin mRNA, increased approximately fourfold from GD 9 to 15. The pattern of temporal expression for ATP7A was consistent with its possible role in copper delivery to lysyl oxidase.  相似文献   

9.
Copper depletion is associated with myocardial ischemic infarction, in which copper metabolism MURR domain 1 (COMMD1) is increased. The present study was undertaken to test the hypothesis that the elevated COMMD1 is responsible for copper loss from the ischemic myocardium, thus worsening myocardial ischemic injury. Mice (C57BL/6J) were subjected to left anterior descending coronary artery permanent ligation to induce myocardial ischemic infarction. In the ischemic myocardium, copper reduction was associated with a significant increase in the protein level of COMMD1. A tamoxifen-inducible, cardiomyocyte -specific Commd1 knockout mouse (C57BL/6J) model (COMMD1CMC▲/▲) was generated using the Cre-LoxP recombination system. COMMD1CMC▲/▲ and wild-type littermates were subjected to the same permanent ligation of left anterior descending coronary artery. At the 7th day after ischemic insult, COMMD1 deficiency suppressed copper loss in the heart, along with preservation of vascular endothelial growth factor and vascular endothelial growth factor receptor 1 expression and the integrity of the vascular system in the ischemic myocardium. Corresponding to this change, infarct size of ischemic heart was reduced and myocardial contractile function was well preserved in COMMD1CMC▲/▲ mice. These results thus demonstrate that upregulation of COMMD1 is at least partially responsible for copper efflux from the ischemic heart. Cardiomyocyte-specific deletion of COMMD1 helps preserve the availability of copper for angiogenesis, thus suppressing myocardial ischemic dysfunction.  相似文献   

10.
Lysyl oxidase plays a critical role in the formation of the extracellular matrix, and its activity is required for the normal maturation and cross-linking of collagen and elastin. An 18-kDa lysyl oxidase propeptide (LOPP) is generated from 50-kDa prolysyl oxidase by extracellular proteolytic cleavage during the biosynthesis of active 30-kDa lysyl oxidase enzyme. The fate and the functions of the LOPP are largely unknown, although intact LOPP was previously observed in osteoblast cultures. We investigated the spatial localization of molecular forms of lysyl oxidase, including LOPP in proliferating and differentiating osteoblasts, by using confocal immunofluorescence microscopy and Western blots of cytoplasmic and nuclear extracts. In the present study, a stage-dependent intracellular distribution of LOPP in the osteoblastic cell was observed. In proliferating osteoblasts, LOPP epitopes were principally associated with the Golgi and endoplasmic reticulum, and mature lysyl oxidase epitopes were found principally in the nucleus and perinuclear region. In differentiating cells, LOPP and mature lysyl oxidase immunostaining showed clear colocalization with the microtubule network. The subcellular distribution of LOPP and its temporal and physical association with microtubules were confirmed by Western blot and far Western blot studies. We also report that N-glycosylated and nonglycosylated LOPP are present in MC3T3-E1 cell cultures. We conclude that LOPP has a stage-dependent intracellular distribution in osteoblastic cells. Future studies are needed to investigate whether the LOPP associations with microtubules or the osteoblast nucleus have functional effects for osteoblast differentiation and bone formation. microtubules; confocal immunofluorescence microscopy; extracellular matrix; osteoblast differentiation  相似文献   

11.
The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO/VAP-1. The present work reports the kinetics of the interaction of l-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since d-lysine, l-lysine ethyl ester and ε-acetyl-l-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H2O2, formed during the oxidation of a physiological SSAO substrate, yet to be identified.  相似文献   

12.
We studied the role of the mineralocorticoid receptor (MR) in the signaling that promotes atrial fibrosis. Left atrial myocardium of patients with atrial fibrillation (AF) exhibited 4-fold increased hydroxyproline content compared with patients in sinus rhythm. Expression of MR was similar, as was 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which also increased. 11β-HSD2 converts cortisol to receptor-inactive metabolites allowing aldosterone occupancy of MR. 11β-HSD2 was up-regulated by arrhythmic pacing in cultured cardiomyocytes and in a mouse model of spontaneous AF (RacET). In cardiomyocytes, aldosterone induced connective tissue growth factor (CTGF) in the absence but not in the presence of cortisol. Hydroxyproline expression was increased in cardiac fibroblasts exposed to conditioned medium from aldosterone-treated cardiomyocytes but not from cardiomyocytes treated with both cortisol and aldosterone. Aldosterone increased connective tissue growth factor and hydroxyproline expression in cardiac fibroblasts, which were prevented by BR-4628, a dihydropyridine-derived selective MR antagonist, and by spironolactone. Aldosterone activated RhoA GTPase. Rho kinase inhibition by Y-27632 prevented CTGF and hydroxyproline, whereas the RhoA activator CN03 increased CTGF expression. Aldosterone and CTGF increased lysyl oxidase, and aldosterone enhanced miR-21 expression. MR antagonists reduced the aldosterone but not the CTGF effect. In conclusion, MR signaling promoted fibrotic remodeling. Increased expression of 11β-HSD2 during AF leads to up-regulation of collagen and pro-fibrotic mediators by aldosterone, specifically RhoA activity as well as CTGF, lysyl oxidase, and microRNA-21 expression. The MR antagonists BR-4628 and spironolactone prevent these alterations. MR inhibition may, therefore, represent a potential pharmacologic target for the prevention of fibrotic remodeling of the atrial myocardium.  相似文献   

13.
Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.  相似文献   

14.
Pyroptosis is an inflammatory cell death that regulates cardiomyocyte loss after myocardial infarction. Reports indicate that nicorandil has a strong anti-inflammatory effect and protects the myocardium from myocardial infarction. However, its relationship with pyroptosis is largely unreported. Here, we investigated to influence and mechanism of action of nicorandil on cardiomyocyte pyroptosis. Forty Sprague Dawley rats were randomly assigned to sham, MI, MI + nicorandil, and MI + nicorandil + TAK242 groups (10 per group). Myocardial infarction modeling was performed through ligation of the anterior descending branch of the left coronary artery. The function of cardiac was evaluated through echocardiography, detection of myocardial adenine nucleotides, cTnI, LDH, TTC, and HE staining. Moreover, we used qRT-PCR, immunohistochemistry, and Western blotting to examine the expression of pyroptosis-related molecules and the inflammasome pathway of TLR4/MyD88/NF-κB/NLRP3. Myocardial infarction caused the activation of GSDMD, aggravated myocardial injury, and triggered cardiac dysfunction. Myocardial infarction induced pyroptotic cell death, manifested as upregulation in mRNA and protein levels associated with pyroptosis, including caspase-1 cleavage and increased expression of IL-1β and IL-18. These changes were mitigated by nicorandil. The achieved data implicate that myocardial infarction induces pyroptosis via the TLR4/MyD88/NF-κB/NLRP3 pathway, which can be inhibited by nicorandil pretreatment. Therefore, nicorandil exerts cardioprotective effects by activating KATP channels, and at least in part through inhibition of the TLR4/MyD88/NF-κB/NLRP3 pathway to reduce myocardial infarction-induced pyroptosis. As such, it is a potential therapy for ischemic heart disease.  相似文献   

15.
Tissue formation and healing both require cell proliferation and migration, but also extracellular matrix production and tensioning. In addition to restricting proliferation of damaged cells, increasing evidence suggests that cellular senescence also has distinct modulatory effects during wound healing and fibrosis. Yet, a direct role of senescent cells during tissue formation beyond paracrine signaling remains unknown. We here report how individual modules of the senescence program differentially influence cell mechanics and ECM expression with relevance for tissue formation. We compared DNA damage-mediated and DNA damage-independent senescence which was achieved through over-expression of either p16Ink4a or p21Cip1 cyclin-dependent kinase inhibitors in primary human skin fibroblasts. Cellular senescence modulated focal adhesion size and composition. All senescent cells exhibited increased single cell forces which led to an increase in tissue stiffness and contraction in an in vitro 3D tissue formation model selectively for p16 and p21-overexpressing cells. The mechanical component was complemented by an altered expression profile of ECM-related genes including collagens, lysyl oxidases, and MMPs. We found that particularly the lack of collagen and lysyl oxidase expression in the case of DNA damage-mediated senescence foiled their intrinsic mechanical potential. These observations highlight the active mechanical role of cellular senescence during tissue formation as well as the need to synthesize a functional ECM network capable of transferring and storing cellular forces.  相似文献   

16.
17.
Corneal stroma contains an extracellular matrix of orthogonal lamellae formed by parallel and equidistant fibrils with a homogeneous diameter of ∼35 nm. This is indispensable for corneal transparency and mechanical functions. However, the mechanisms controlling corneal fibrillogenesis are incompletely understood and the conditions required for lamellar stacking are essentially unknown. Under appropriate conditions, chick embryo corneal fibroblasts can produce an extracellular matrix in vitro resembling primary corneal stroma during embryonic development. Among other requirements, cross-links between fibrillar collagens, introduced by tissue transglutaminase-2, are necessary for the self-assembly of uniform, small diameter fibrils but not their lamellar stacking. By contrast, the subsequent lamellar organization into plywood-like stacks depends on lysyl aldehyde-derived cross-links introduced by lysyl oxidase activity, which, in turn, only weakly influences fibril diameters. These cross-links are introduced at early stages of fibrillogenesis. The enzymes are likely to be important for a correct matrix deposition also during repair of the cornea.  相似文献   

18.
Differentiation of phenotypically normal osteoblast cultures leads to formation of a bone-like extracellular matrix in vitro. Maximum collagen synthesis occurs early in the life of these cultures, whereas insoluble collagen deposition occurs later and is accompanied by a diminished rate of collagen synthesis. The mechanisms that control collagen deposition seem likely to include regulation of extracellular collagen biosynthetic enzymes, but expression patterns of these enzymes in differentiating osteoblasts has received little attention. The present study determined the regulation of lysyl oxidase as a function of differentiation of phenotypically normal murine MC3T3-E1 cells at the level of RNA and protein expression and enzyme activity. In addition, the regulation of BMP-1/mTLD mRNA levels that encodes procollagen C-proteinases was assayed. The role of lysyl oxidase in controlling insoluble collagen accumulation was further investigated in inhibition studies utilizing beta-aminopropionitrile, a specific inhibitor of lysyl oxidase enzyme activity. Results indicate that lysyl oxidase is regulated as a function of differentiation of MC3T3-E1 cells, and that the maximum increase in lysyl oxidase activity precedes the most efficient phase of insoluble collagen accumulation. By contrast BMP-1/mTLD is more constitutively expressed. Inhibition of lysyl oxidase in these cultures increases the accumulation of abnormal collagen fibrils, as determined by solubility studies and by electron microscopy. Taken together, these data support that regulation of lysyl oxidase activity plays a key role in the control of collagen deposition by osteoblast cultures.  相似文献   

19.
研究环状RNA ITGA7(circITGA7)在心律失常大鼠心肌细胞中的表达,并探讨其对心律失常大鼠心肌细胞凋亡的影响及机制。40只SPF级SD雄性大鼠,分为4组,分别为假手术组、心律失常组、circITGA7干扰心律失常组和对照干扰心律失常组,尾静脉注射circITGA7干扰腺相关病毒构建circITGA7干扰大鼠模型,并通过手术结扎冠状动脉前降支建立缺血性心律失常大鼠模型。通过荧光定量PCR法(Q-PCR)检测circITGA7在心律失常大鼠心肌组织中的表达水平。分别检测circITGA7对心律失常大鼠心肌氧化应激和凋亡的影响;Western blotting检测circITGA7对心律失常大鼠心肌细胞p-AKT和ITGA7蛋白表达的影响。Q-PCR结果显示circITGA7在心律失常大鼠心肌组织中的表达显着高于假手术组大鼠;与对照干扰心律失常组比较,circITGA7干扰心律失常组大鼠心律失常评分显著降低,差异具有统计学意义(p<0.01)。与假手术组比较,心律失常组大鼠心肌细胞SOD活力显著降低,MDA含量显著升高;与对照干扰心律失常组比较,circITGA7干扰心律失常组大鼠心律失常组大鼠心肌细胞SOD活力显著升高,MDA含量显著降低,差异具有统计学意义(p<0.01)。TUNEL检测结果显示,与假手术组比较,心律失常大鼠心肌细胞凋亡程度显著升高;与对照干扰心律失常组大鼠比较,circITGA7干扰心律失常组大鼠心肌细胞凋亡率为显著降低(p<0.01);Western blotting结果显示,与假手术组比较,心律失常大鼠心肌细胞p-AKT和ITGA7的蛋白表达水平均显著升高;与对照干扰心律失常组比较,circITGA7干扰心律失常组大鼠心肌细胞p-AKT和ITGA7的蛋白表达水平均显著下降(p<0.01)。干扰circITGA7能够抑制AKT路径,抑制心律失常大鼠心肌细胞氧化应激和细胞凋亡,缓解大鼠心律失常。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号