首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells immunoreactive for the enzyme aromatase were localized in the forebrain of male zebra finches with the use of an immunocytochemistry procedure. Two polyclonal antibodies, one directed against human placental aromatase and the other directed against quail recombinant aromatase, revealed a heterogeneous distribution of the enzyme in the telencephalon, diencephalon, and mesencephalon. Staining was enhanced in some birds by the administration of the nonsteroidal aromatase inhibitor, R76713 (racemic Vorozole) prior to the perfusion of the birds as previously described in Japanese quail. Large numbers of cells immunoreactive for aromatase were found in nuclei in the preoptic region and in the tuberal hypothalamus. A nucleus was identified in the preoptic region based on the high density of aromatase immunoreactive cells within its boundaries that appears to be homologous to the preoptic medial nucleus (POM) described previously in Japanese quail. In several birds alternate sections were stained for immunoreactive vasotocin, a marker of the paraventricular nucleus (PVN). This information facilitated the clear separation of the POM in zebra finches from nuclei that are adjacent to the POM in the preoptic area-hypothalamus, such as the PVN and the ventromedial nucleus of the hypothalamus. Positively staining cells were also detected widely throughout the telencephalon. Cells were discerned in the medial parts of the ventral hyperstriatum and neostriatum near the lateral ventricle and in dorsal and medial parts of the hippocampus. They were most abundant in the caudal neostriatum where they clustered in the dorsomedial neostriatum, and as a band of cells coursing along the dorsal edge of the lamina archistriatalis dorsalis. They were also present in high numbers in the ventrolateral aspect of the neostriatum and in the nucleus taeniae. None of the telencephalic vocal control nuclei had appreciable numbers of cells immunoreactive for aromatase within their boundaries, with the possible exception of a group of cells that may correspond to the medial part of the magnocellular nucleus of the neostriatum. The distribution of immunoreactive aromatase cells in the zebra finch brain is in excellent agreement with the distribution of cells expressing the mRNA for aromatase recently described in the finch telencephalon. This widespread telencephalic distribution of cells immunoreactive for aromatase has not been described in non-songbird species such as the Japanese quail, the ring dove, and the domestic fowl. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
This review examines possible role of progesterone receptor (PR) and androgen receptor (AR) "cross-talk" in the expression of courtship behaviour in the ring dove (Streptopelia risoria). In doves, although androgen has been mostly associated with aggressive courtship behaviour and progesterone with the initiation of incubation, progesterone administration to courting birds terminates the aggressive component of courtship whilst having no effect on nesting behaviour. Recent results in doves have identified a high density of androgen receptor and progesterone receptor immunoreactivity (AR-ir and PR-ir) in the hypothalamus of both sexes in regions known to be directly involved in courtship and incubation behaviour. Nuclear AR-ir in courting birds is widespread throughout the brain. Nuclear PR-ir is only localized in discrete regions of the preoptic hypothalamus of both sexes. In the anterior and posterior hypothalamus of courting birds an increase number of AR-ir and PR-ir neurons colocalizes (70-90%) in the nucleus preopticus anterior (POA), nucleus preopticus medialis (POM), nucleus preopticus paraventricularis magnocellularis (PPM), nucleus hypothalami lateralis posterioris (PLH), and tuberal hypothalamus (Tu). A lower percentage of colocalization is seen in birds at other stages of the breeding cycle. The high percentage of AR-ir and PR-ir colocalization in the preoptic hypothalamus of courting doves supports previous reports involving progesterone acting in these brain regions to terminate the androgen-dependent aggressive courtship behaviour in male doves. The increase in PR-ir staining intensity in AR-ir neurons in courting birds suggests that this progesterone-dependent termination of aggressive courtship display in males occurs at the receptor level and may be orchestrated by central oestrogen.  相似文献   

3.
Summary The distribution of aromatase-immunoreactive cells was studied by immunocytochemistry in the mouse forebrain using a purified polyclonal antibody raised against human placental aromatase. Labeled perikarya were found in the dorso-lateral parts of the medial and tuberal hypothalamus. Positive cells filled an area extending between the subincertal nucleus in the dorsal part, the ventromedial hypothalamic nucleus in the ventral part, and the internal capsule and the magnocellular nucleus of the lateral hypothalamus in the lateral part. The same distribution was seen in the two strains of mice that were studied (Jackson and Swiss), and the number of immunoreactive perikarya did not seem to be affected by castration or testosterone treatment. No immunoreactivity could be detected in the medial regions of the preoptic area and hypothalamus; these were expected to contain the enzyme based on assays of aromatase activity performed in rats and on indirect autoradiographic evidence in mice. Our data raise questions concerning the distribution of aromatase in the brain and the mode of action of the centrally produced estrogens.  相似文献   

4.
Aromatase, the enzyme responsible for the conversion of testosterone to estradiol, is found in the rat brain and is present in regions of the preoptic area, hypothalamus, and limbic system. Gonadal steroid hormones regulate aromatase activity levels in many brain regions, but not all. Using in situ hybridization, we examined the distribution of aromatase mRNA in the adult male forebrain, as well as the levels of aromatase mRNA in the brains of males and females, and the regulation by gonadal steroid hormones. In the adult male, many heavily labelled cells were found in the encapsulated bed nucleus of the stria terminalis (BNST), the medial preoptic nucleus (MPN), the ventro-medial nucleus (VMN), the medial amygdala (mAMY) and the cortical amygdala (CoAMY). The regional distribution of aromatase mRNA was similar in males and females, but males tended to have a greater number of aromatase mRNA-expressing cells in each region compared to females. Aromatase mRNA levels in the BNST, MPN, VMN and mAMY tended to be lower in castrated males than in intact males, whereas aromatase mRNA levels were unaltered by castration in the CoAMY. Further analysis of individual cells expressing aromatase mRNA suggests that aromatase mRNA may be regulated by steroid hormones differentially in specific populations of cells in regions where enzyme activity levels are steroid-hormone-dependent.  相似文献   

5.
The spinal and peripheral innervation of the clitoris and vagina are fairly well understood. However, little is known regarding supraspinal control of these pelvic structures. The multisynaptic tracer pseudorabies virus (PRV) was used to map the brain neurons that innervate the clitoris and vagina. To delineate forebrain input on PRV-labeled cells, the anterograde tracer biotinylated dextran amine was injected in the medial preoptic area (MPO), ventromedial nucleus of the hypothalamus (VMN), or the midbrain periaqueductal gray (PAG) 10 days before viral injections. These brain regions have been intimately linked to various aspects of female reproductive behavior. After viral injections (4 days) in the vagina and clitoris, PRV-labeled cells were observed in the paraventricular nucleus (PVN), Barrington's nucleus, the A5 region, and the nucleus paragigantocellularis (nPGi). At 5 days postviral administration, additional PRV-labeled cells were observed within the preoptic region, VMN, PAG, and lateral hypothalamus. Anterograde labeling from the MPO terminated among PRV-positive cells primarily within the dorsal PVN of the hypothalamus, ventrolateral VMN (VMNvl), caudal PAG, and nPGi. Anterograde labeling from the VMN terminated among PRV-positive cells in the MPO and lateral/ventrolateral PAG. Anterograde labeling from the PAG terminated among PRV-positive cells in the PVN, ventral hypothalamus, and nPGi. Transynaptically labeled cells in the lateral hypothalamus, Barrington's nucleus, and ventromedial medulla received innervation from all three sources. These studies, together, identify several central nervous system (CNS) sites participating in the neural control of female sexual responses. They also provide the first data demonstrating a link between the MPO, VMNvl, and PAG and CNS regions innervating the clitoris and vagina, providing support that these areas play a major role in female genital responses.  相似文献   

6.
The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, septal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohormones or neuromodulators.  相似文献   

7.
8.
In the male quail forebrain, aromatase-immunoreactive (ARO-ir) elements are clustered within the sexually dimorphic medial preoptic nucleus (POM), nucleus striae terminalis (nST), nucleus accumbens (nAc), and ventromedial and tuberal hypothalamus. These ARO-ir cells are sensitive to testosterone and its metabolites: Their number and size increase after exposure to these steroids. The POM and lateral septum are also characterized by a dense vasotocinergic innervation that is also sensitive to testosterone. We analyzed here the anatomical relationships between ARO-ir elements and VT-ir fibers in the quail prosencephalon. Sequential staining for vasotocin, aromatase, or vasotocin plus aromatase was performed on adjacent 30-μm-thick cryostat sections. High concentrations of thin VT-ir fibers were observed within the POM, nST, lateral septum, periventricular mesencephalic central gray, and ventromedial and tuberal hypothalamus. There was a close correspondence between the extension of the ARO-ir cells and of VT-ir fibers. In double-labeled sections, all clusters of ARO-ir cells with the exception of those located in the nAc were embedded in a dense network of VT-ir fibers. Many of the VT-ir terminals appeared to end in the neuropile surrounding ARO-ir elements rather than directly on their cell bodies. This study supports the idea that the testosterone-dependent aromatase system is directly innervated by a testosterone-dependent peptidergic system. Aromatase-containing cells could therefore be modulated by steroids both directly and indirectly through the vasotocin system. Alternatively, this neuroanatomical arrangement may mediate the control of vasotocin synthesis or release by steroids. Functional studies demonstrate that both aromatase and vasotocin affect reproductive behavior in quail, and the present data provide anatomical support for the integration of these effects. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 45–60, 1997  相似文献   

9.
Estrogens are produced by the aromatization of androgens. These steroids exert their actions after binding to their receptors. Past studies have shown that estrogen receptors (ER) and aromatase enzyme (AROM) reside in many of the same brain regions. Few studies, however, have examined the neural co-localization of these important components involved in estrogen-activated behaviors. In the present study we examined the co-localization of ER and AROM immunoreactive (ir) neurons in musk shrew (Suncus murinus) brains. Data were collected from a representative section from three neural regions, the bed nucleus of the stria terminalis (BNST), medial preoptic area (mPOA), and ventromedial nucleus of the hypothalamus (VMN). Here we report a sex difference in the number of ER-ir neurons from the analyzed section of the mPOA and BNST. Females have more ER-ir neurons in the mPOA and males have more in the BNST. In the sections we examined, males tended to have more aromatase containing neurons than females. Although there were no significant differences in the numbers of double-labeled cells, the VMN contains the greatest percentage of these cells in both males and females; followed by the mPOA and the BNST. In addition, in the mPOA of both sexes, a distinct nucleus of aromatase containing neurons which was devoid of ER immunoreactivity was noted. Area measurements of the AROM-ir nucleus showed that it was significantly larger in males than in females. Taken together, these data suggest that there is not extensive cellular co-localization of estrogen receptors and aromatase enzyme in the musk shrew brain. However, the presence of other genomic forms of ER (membrane and/or ERβ) in AROM containing neurons has not been ruled out by this study. Thus, we hypothesize that estrogens produced in brain affect behavior by binding to ER in neurons other than those that contain aromatase enzyme.  相似文献   

10.
11.
The present study was conducted to investigate the mRNA expression of the two estrogen receptor (ER) subtypes ERalpha and ERbeta in the brain of Japanese quail embryos. We found expression of both ERalpha and ERbeta mRNA in homogenate of whole head from 6-day-old embryos, and in brain homogenate from 9- and 12-day-old embryos using real-time PCR. In 9- and 12-day-old embryos the ERalpha expression was higher in females than in males. We used in situ hybridization to examine the localization of the ERs in sections from male and female brains on day 9 and day 17 of incubation. On day 9, ERbeta mRNA was detected in the developing medial preoptic nucleus (POM), in the medial part of the bed nucleus of the striae terminalis (BSTm), and in the tuberal region of the hypothalamus. ERalpha signal could not be detected in the POM, the BSTm or the tuberal region in 9-day-old embryos. In 17-day-old embryos, ERbeta was highly expressed in the preoptic area, the nucleus Taeniae of the Amygdala (TnA) and the BSTm. Expression of ERalpha mRNA was detected in parts of the preoptic area and in the telencephalic TnA. No ERalpha expression was found in the BSTm, an area known to be sexually dimorphic in adults. The high embryonic expression of ERbeta in brain areas linked to sexual behavior indicates that ERbeta plays a role in sexual differentiation of the Japanese quail brain.  相似文献   

12.
The anatomical distribution and seasonal variations in aromatase activity and in the number of aromatase-immunoreactive cells were studied in the brain of free-living male pied flycatchers (Ficedula hypoleuca). A high aromatase activity was detected in the telencephalon and diencephalon but low to negligible levels were present in the optic lobes, cerebellum, and brain stem. In the diencephalon, most aromatase-immunoreactive cells were confined to three nuclei implicated in the control of reproductive behaviors: the medial preoptic nucleus, the nucleus of the stria terminalis, and the ventromedial nucleus of the hypothalamus. In the telencephalon, the immunopositive cells were clustered in the medial part of the neostriatum and in the hippocampus as previously described in another songbird species, the zebra finch. No immunoreactive cells could be observed in the song control nuclei. A marked drop in aromatase activity was detected in the anterior and posterior diencephalon in the early summer when the behavior of the birds had switched from defending a territory to helping the female in feeding the nestlings. This enzymatic change is presumably controlled by the drop in plasma testosterone levels observed at that stage of the reproductive cycle. No change in enzyme activity, however, was seen at that time in other brain areas. The number of aromatase-immunoreactive cells also decreased at that time in the caudal part of the medial preoptic nucleus but not in the ventromedial nucleus of the hypothalamus (an increase was even observed), suggesting that differential mechanisms control the enzyme concentration and enzyme activity in the hypothalamus. Taken together, these data suggest that changes in diencephalic aromatase activity contribute to the control of seasonal variations in reproductive behavior of male pied flycatchers but the role of the telencephalic aromatase in the control of behavior remains unclear at present.  相似文献   

13.
Light-microscopic immunohistochemical study of the brain with use of the unlabeled antibody to gonadotropin-releasing hormone (GnRH) was carried out on sexually mature individuals of the sturgeon of stage IV of gonadal maturity (before spawning). The brain was examined as a whole; the GnRH-immunoreactive (GnRH-IR) structures were revealed in the olfactory bulb, forebrain, hypothalamus, and neuropituitary. In the fish studied at prespawning period, the highest density of GnRH-IR structure was noticed in the ventral region of forebrain, preoptic region, and anterior neuropituitary. The GnRH-IR cells of the forebrain ventral region, preoptic, and tuberal nuclei send their axons to the region of anterior neuropituitary, in which they contact vessels of the primary portal pituitary system. Thereby, the gonadotropin secretion regulation is performed by corresponding cells of adenopituitary. Rare GnRH-IR fibers in the posterior pituitary lobe contact the general circulation vessels. The dendrites of the GnRH-IR cells that we have revealed in the preoptic region and in the region of tuberal nucleus are located very close to the preoptic bay cavity and to the cerebral III ventricle, respectively. This indicates a possibility of secretion of the neurohormone into the cerebrospinal fluid.  相似文献   

14.
Perinatal development is often viewed as the major window of time for organization of steroid-sensitive neural circuits by steroid hormones. Behavioral and neuroendocrine responses to steroids are dramatically different before and after puberty, suggesting that puberty is another window of time during which gonadal steroids affect neural development. In the present study, we investigated whether the presence of gonadal hormones during pubertal development affects the number of androgen receptor and estrogen receptor alpha-immunoreactive (AR-ir and ER alpha-ir, respectively) cells in limbic regions. Male Syrian hamsters were castrated either before or after pubertal development, and 4 weeks later they received a single injection of testosterone or oil vehicle 4 h prior to tissue collection. Immunocytochemistry for AR and ER alpha was performed on brain sections from testosterone-treated and oil-treated males, respectively. Adult males that had been castrated before puberty had a greater number of AR-ir cells in the medial preoptic nucleus than adult males that had been castrated after puberty. There were no significant differences in ER alpha-ir cell number in any of the brain regions examined. The demonstration that exposure to gonadal hormones during pubertal development is associated with reduced AR-ir in the medial preoptic nucleus indicates that puberty is a period of neural development during which hormones shape steroid-sensitive neural circuits.  相似文献   

15.
Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of aromatase-immunoreactive (ARO-ir) fibers and punctate structures, but no ARO-ir cells are present in this region. The origin of the ARO-ir fibers of the GCt was investigated here by retrograde tract-tracing combined with immunocytochemistry for aromatase. Following injection of fluorescent microspheres in GCt, retrogradely labeled cells were found in a large number of hypothalamic and mesencephalic areas and in particular within the three main groups of ARO-ir cells located in the POM, the ventromedial nucleus of the hypothalamus, and the bed nucleus striae terminalis. Labeling of these cells for aromatase by immunocytochemistry demonstrated, however, that aromatase-positive retrogradely labeled cells are observed almost exclusively within the POM. Double-labeled cells were abundant in both the rostral and caudal parts of the POM and their number was apparently not affected by the location of the injection site within GCt. At both rostro-caudal levels of the POM, ARO-ir retrogradely labeled cells were, however, more frequent in the lateral than in the medial POM. These data indicate that ARO-ir neurons located in the lateral part of the POM may control the premotor aspects of male copulatory behavior through their projection to GCt and suggest that GCt activity could be affected by estrogens released from the terminals of these ARO-ir neurons.  相似文献   

16.
Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens.  相似文献   

17.
Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the preoptic area, demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species.  相似文献   

18.
Wang F  Tian DR  Tian N  Chen H  Shi YS  Chang JK  Yang J  Yuan L  Han JS 《Peptides》2006,27(1):165-171
Beacon is a novel peptide isolated from the hypothalamus of Israeli sand rat. In the present study, we determined the distribution of beacon in the rat brain using immunohistochemical approach with a polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73). The hypothalamus represented the major site of beacon-immunoreactive (IR) cell bodies that were concentrated in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). Additional immunostained cells were found in the septum, bed nucleus of the stria terminalis, subfornical organ and subcommissural organ. Beacon-IR fibers were seen with high density in the internal layer of the median eminence and low to moderate density in the external layer. Significant beacon-IR fibers were also seen in the nucleus of the solitary tract and lateral reticular formation. The beacon neurons found in the PVN were further characterized by double label immunohistochemistry. Several beacon-IR neurons that resided in the medial PVN were shown to coexpress corticotrophin-releasing hormone (CRH) and most labeled beacon fibers in the external layer of median eminence coexist with CRH. The topographical distribution of beacon-IR in the brain suggests multiple biological activities for beacon in addition to its proposed roles in modulating feeding behaviors and pituitary hormone release.  相似文献   

19.
Many central actions of testosterone (T) require the transformation of T into several metabolites including 5-dihydrotestosterone (5-DHT) and estradiol (E2). In birds as in mammals, 5-DHT and E2, alone or in combination, mimic most behavioral effects of T. The avian brain is, in addition, able to transform T into 5β-DHT, a metabolite which seems to be devoid of any behavioral or physiological effects, at least in the context of reproduction. By in vitro product-formation assays, we have analyzed the distribution, sex differences and regulation by steroids of the 3 main T metabolizing enzymes (aromatase, 5- and 5β-reductases) in the brain of the Japanese quail (Coturnix c. japonica) and the zebra finch (Taeniopygia guttata castanotis). In the hypothalamus of quail and finches, aromatose activity is higher in males than in females. It is also decreased by castration and increased by T. The activity of the 5-reductase is not sexually differentiated nor controlled by T. The 5β-reductase activity is often higher in females than in males but this difference disappears in gonadectomized birds and no clear effect of T can be observed at this level. The zebra finch brain also contains a number of steroid-sensitive telencephalic nuclei [e.g. hyperstriatum ventrale, pars caudale (HVc) and robustus archistriatalis (RA)] which play a key role in the control of vocalizations. These nuclei also contain T-metabolizing enzymes but the regulation of their activity is substantially different from what has been observed in the hypothalamus. Aromatase activity is for example higher in females than in males in HVc and RA and the enzyme in these nuclei is not affected by castration nor T treatment. In these nuclei, the 5-reductase activity is higher in males than in females and the reverse is true for the 5β-reductase. These sex differences in activity are not sensitive to gonadectomy and T treatment and might therefore be organized by neonatal steroids. We have been recently able to localize aromatase-immunoreactive (AR-ir) neurons by ICC in the brain of the quail and zebra finch. Positive cells are found in the preoptic area, ventromedial and tuberal hypothalamus. AR-ir material is found in the perikarya of cells and fills the entire cellular processes including axons. At the electron microscope level, immunoreactive material can clearly be observed in the synaptic boutons. This observation raises questions concerning the mode of action of estrogens produced by central aromatization of T.  相似文献   

20.
The aim of this study was to determine in the ring dove, the effects of aromatase inhibition on the expression of aggressive courtship and nest-soliciting behaviours in relation to the distribution of cells containing immunoreactive androgen (AR) and progesterone (PR) receptor in the hypothalamus and pituitary gland. Isolated sexually experienced ring doves were transferred in opposite sex pairs to individual breeding cages, and then injected with the aromatase inhibitor, fadrozole (four males and four females), or saline vehicle (four males and four females) for 3 days at 12 hourly intervals. Saline-injected control males displayed aggressive courtship behaviours (bow-cooing and hop-charging) and nest-soliciting throughout the study, and control females displayed nest-soliciting. By day 3, fadrozole treatment resulted in the disappearance of all these behaviours and in a decrease or disappearance of AR and PR in the anterior pituitary gland, and in the nucleus preopticus paraventricularis magnocellularis (PPM), nucleus preopticus medialis (POM), nucleus hypothalami lateralis posterioris (PLH), and ventral, lateral and dorsal nucleus tuberalis in the hypothalamus (VTu, LTu, DTu). In the nucleus preopticus anterior (POA), fadrozole treatment decreased AR in both sexes and decreased PR in females but not in males. Cells containing co-localized nuclear AR and PR were found in all hypothalamic areas examined, and in the anterior pituitary gland. Fadrozole is suggested to reduce the local availability of estrogen required indirectly for the induction of AR, and except in cells containing PR in the male POA, for the direct induction of PR. It is suggested that aggressive courtship behaviour is terminated by “cross talk” between aromatase-independent PR and aromatase-dependent AR co-localized in neurons in the POA. Aromatase-independent PR may increase in the male POA in response to visual cues provided by a partner. Aromatase-dependent PR in the POM, and basal hypothalamus may play a role in the facilitatory effect of progesterone on estrogen-induced nest-orientated behaviours. (Mol Cell Biochem 276: 193–204, 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号