首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The two regulatory residues that control the enzymatic activity of the mitogen-activated protein (MAP) kinase ERK2 are phosphorylated by the unique MAP kinase kinases MEK1/2 and dephosphorylated by several tyrosine-specific and dual specificity protein phosphatases. Selective docking interactions facilitate these phosphorylation and dephosphorylation events, controlling the specificity and duration of the MAP kinase activation-inactivation cycles. We have analyzed the contribution of specific residues of ERK2 in the physical and functional interaction with the ERK2 phosphatase inactivators PTP-SL and MKP-3 and with its activator MEK1. Single mutations in ERK2 that abrogated the dephosphorylation by endogenous tyrosine phosphatases from HEK293 cells still allowed efficient phosphorylation by endogenous MEK1/2. Discrete ERK2 mutations at the ERK2 docking groove differentially affected binding and inactivation by PTP-SL and MKP-3. Remarkably, the cytosolic retention of ERK2 by its activator MEK1 was not affected by any of the analyzed ERK2 single amino acid substitutions. A chimeric MEK1 protein, containing the kinase interaction motif of PTP-SL, bound tightly to ERK2 through its docking groove and behaved as a gain-of-function MAP kinase kinase that hyperactivated ERK2. Our results provide evidence that the ERK2 docking groove is more restrictive and selective for its tyrosine phosphatase inactivators than for MEK1/2 and indicate that distinct ERK2 residues modulate the docking interactions with activating and inactivating effectors.  相似文献   

3.
Activating mutations within the K-ras gene occur in a high percentage of human pancreatic carcinomas. We reported previously that the presence of oncogenic, activated K-ras in human pancreatic carcinoma cell lines did not result in constitutive activation of the extracellular signal-regulated kinases (ERK1 and ERK2). In the present study, we further characterized the ERK signaling pathway in pancreatic tumor cell lines in order to determine whether the ERK pathway is subject to a compensatory downregulation. We found that the attenuation of serum-induced ERK activation was not due to a delay in the kinetics of ERK phosphorylation. Treatment with the tyrosine phosphatase inhibitor orthovanadate increased the level of ERK phosphorylation, implicating a vanadate-sensitive tyrosine phosphatase in the negative regulation of ERK. Furthermore, expression of a dual specificity phosphatase capable of inactivating ERK known as mitogen-activated protein (MAP) kinase phosphatase-2 (MKP-2) was elevated in most of the pancreatic tumor cell lines and correlated with the presence of active MAP kinase kinase (MEK). Taken together, these results suggest that pancreatic tumor cells expressing oncogenic K-ras compensate, in part, by upregulating the expression of MKP-2 to repress the ERK signaling pathway.  相似文献   

4.
Receptor tyrosine kinases activate mitogen-activated protein (MAP) kinases through Ras, Raf-1, and MEK. Receptor tyrosine kinases can be transactivated by G protein-coupled receptors coupling to G(i) and G(q). The human G protein-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) couple to G(s) and elevate intracellular cAMP. Certain G(s)-coupled receptors have been shown to activate MAP kinases through a protein kinase A- and Rap1-dependent pathway. We report the activation of the extracellular signal-regulated kinases (ERKs) 1 and 2 (p44 and p42 MAP kinase) through the human serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in COS-7 and human embryonic kidney HEK293 cells. In transfected HEK293 cells, 5-HT-induced activation of ERK1/2 is sensitive to H89, which indicates a role for protein kinase A. The observed activation of ERK1/2 does not require transactivation of epidermal growth factor receptors. Furthermore, 5-HT induced activation of both Ras and Rap1. Whereas the presence of Rap1GAP1 did not influence the 5-HT-mediated activation of ERK1/2, the activation of ERK1/2 was abolished in the presence of dominant negative Ras (RasN17). ERK1/2 activation was reduced in the presence of "dominant negative" Raf1 (RafS621A) and slightly reduced by dominant negative B-Raf, indicating the involvement of one or more Raf isoforms. These findings suggest that activation of ERK1/2 through the human G(s)-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in HEK293 cells is dependent on Ras, but independent of Rap1.  相似文献   

5.
Focal adhesion complexes are actin-rich, cytoskeletal structures that mediate cell adhesion to the substratum and also selectively regulate signal transduction pathways required for interleukin (IL)-1beta signaling to the MAP kinase, ERK. IL-1-induced ERK activation is markedly diminished in fibroblasts deprived of focal adhesions whereas activation of p38 and JNK is unaffected. While IL-1 signaling is known to involve the activity of protein and lipid kinases including MAP kinases, FAK, and PI3K, little is known about the role of phosphatases in the regulation of IL-1 signal generation and attenuation. Here we demonstrate that SHP-2, a protein tyrosine phosphatase present in focal adhesions, modulates IL-1-induced ERK activation and the transient actin stress fiber disorganization that occurs following IL-1 treatment in human gingival fibroblasts. Using a combination of immunoblotting, immunoprecipitation, and immunostaining we show that SHP-2 is present in nascent focal adhesions and undergoes phosphorylation on tyrosine 542 in response to IL-1 stimulation. Blocking anti-SHP-2 antibodies, electoporated into the cytosol of fibroblasts, inhibited IL-1-induced ERK activation, actin filament assembly, and cell contraction, indicating a role for SHP-2 in these processes. In summary, our data indicate that SHP-2, a focal adhesion-associated protein, participates in IL-1-induced ERK activation likely via an adaptor function.  相似文献   

6.
Activation of extracellular signal-regulated kinase (ERK) is known to be regulated by cell adhesion, namely "anchorage dependence". Most studies on the anchorage-dependent regulation have focused on the upstream activating components. We previously reported that the focal adhesion protein vinexin beta can induce the anchorage-independent activation of ERK2. We show here that vinexin beta-induced anchorage-independent activation of ERK2 involves prevention of the dephosphorylation of ERK2, but not the promotion of MEK1 or Raf1 activity. Furthermore, knockdown of vinexin beta resulted in a faster dephosphorylation of ERK2 in A549 cells. Moreover, the coexpression of MKP3/rVH6, an ERK2 specific phosphatase, suppressed the anchorage-independent activation of ERK2 induced by vinexin beta. These results suggest that vinexin beta can prevent the dephosphorylation of ERK2 stimulated by cell detachment, leading to the anchorage-independent activation of ERK2. Furthermore, we found that phosphatase activity directed against activated ERK2 was higher in suspended cells than in adherent cells. In addition, orthovanadate efficiently induces anchorage-independent activation of ERK2 without marked activation of MEK1 in NIH3T3 cells. These observations suggest that the anchorage dependence of ERK1/2 activation is regulated not only by upstream kinases, Raf1 and MEK, but also by phosphatases acting against ERK1/2 and that vinexin beta can induce anchorage-independent activation of ERK by preventing the inactivation of ERK1/2.  相似文献   

7.
Salmonella has developed ways to modulate host cellular response in order to survive. Although the steps required for such modulation have been incompletely characterized, there is increasing evidence for a role for SptP, a type III secretion protein. In part, the actions of SptP are thought to be mediated through its reported inhibition of the extracellular-regulated kinase (ERK) MAP kinase pathway. In the present studies, a series of transfections were performed in which various constitutively activated components of the MAP kinase pathway were co-transfected with SptP in order to determine the mechanism by which SptP inhibits this MAP kinase activation. SptP was found to inhibit the activation of ERK stimulated by both a constitutively active form of Ras and a partially activated form of Raf-1 containing a phospho-mimetic mutation (Raf Y340D). In contrast, the activation of ERK by constitutively active forms of MAP kinase kinase (MEK) was not inhibited, suggesting that the actions of SptP were mediated by Raf-1. In order to determine how SptP might interfere with activation of Raf, we utilized a membrane-localized form of Raf. Constitutive membrane-localization of Raf (RafCAAX), resulting in partial activation, did not prevent inhibition by SptP. However, introduction of an additional, partially activating (Y340D) phospho-mimetic mutation, to RafCAAX, dramatically reduced the ability of SptP to inhibit Raf action. Comparison of SptP mutants, lacking either GTPase-activating protein (GAP) activity or tyrosine phosphatase activity, further suggested that SptP inhibits both the membrane localization and subsequent phosphorylation required for activation of Raf. Both tyrosine phosphatase activity and GAP activity were responsible for SptP inhibition of Raf(Y340D)-induced ERK activation, but only GAP activity was responsible for inhibition of the membrane localized forms of Raf-1. To assess the biological significance of SptP, we examined tumour necrosis factor (TNF)-alpha induction following Salmonella infection. SptP gene deletion enhanced the capacity of Salmonella to induce TNF-alpha secretion following infection of J774A.1 macrophage cells.  相似文献   

8.
Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) signal through EGF and PDGF receptors, which are important receptor tyrosine kinases (RTKs). Growth hormone (GH) and prolactin (PRL) are four helical bundle peptide hormones that signal via GHR and PRLR, members of the cytokine receptor superfamily. In this study, we examine crosstalk between signaling pathways emanating from these disparate receptor groups (RTKs and cytokine receptors). We find that GH and EGF specifically synergize for activation of ERK in murine preadipocytes. The locus of this synergy resides at the level of MEK activation, but not above this level (i.e., not at the level of EGFR, SHC, or Raf activation). Furthermore, dephosphorylation of the scaffold protein, KSR, at a critical serine residue is also synergistically promoted by GH and EGF, suggesting that GH sensitizes these cells to EGF-induced ERK activation by augmenting the actions of KSR in facilitating MEK-ERK activation. Similarly specific synergy in ERK activation is also detected in human T47D breast cancer cells by cotreatment with PRL and PDGF. This synergy also resides at the level of MEK activation. Consistent with this synergy, PRL and PDGF also synergized for c-fos-dependent transactivation of a luciferase reporter gene in T47D cells, indicating that events downstream of ERK activation reflect this signaling synergy. Important conceptual and physiological implications of these findings are discussed.  相似文献   

9.
10.
Growth factor activation of MAP kinase requires cell adhesion.   总被引:24,自引:1,他引:23       下载免费PDF全文
M W Renshaw  X D Ren    M A Schwartz 《The EMBO journal》1997,16(18):5592-5599
The MAP kinase pathway is a major regulator of both normal and oncogenic growth. We report that activation of the MAP kinase ERK2 by serum or purified growth factors is strongly dependent on cell adhesion to extracellular matrix proteins. This effect is specific to soluble growth factors, since suspended cells still activate ERK2 in response to plating on fibronectin, and is reversible. Analysis of endogenous Ras and Raf show that these proteins are still activated by serum in suspended cells, whereas MEK activity is inhibited. Conversely, activation of ERK2 by activated mutants of Ras and Raf is still adhesion-dependent but activation by MEK is not. Consistent with these results, activated MEK enhances growth of ras-transformed cells in suspension but not when adherent. These results identify a novel synergism between cell adhesion- and growth factor-regulated pathways, and explain how oncogenic activation of MAP kinases induces both serum- and anchorage-independent growth.  相似文献   

11.
12.
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.  相似文献   

13.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

14.
Cells transformed by Ras and Raf display dramatic alterations in cell morphology, adhesion, and intracellular architecture. Consequently, we investigated whether Ras or Raf might influence the behavior of proteins known to be involved in the assembly and integrity of focal adhesion complexes that play a crucial role in many of these processes. We identified Raf-induced serine phosphorylation of the adaptor protein paxillin in a variety of cell types. Raf-induced paxillin serine phosphorylation had no effect on paxillin tyrosine phosphorylation and occurred regardless of whether cells were attached or maintained in suspension. Two sites of serine phosphorylation--S126 and S130--were identified. Mutation of these serines to alanine, either alone or in combination, inhibited the ability of Raf to induce paxillin phosphorylation. These data indicate that paxillin is a target for phosphorylation downstream of the Ras-activated Raf-->MEK pathway. However, we have no evidence to suggest that ERK1/2 are the kinases responsible for Raf-induced paxillin phosphorylation. Furthermore, we did not detect any alterations in the binding of paxillin to a number of focal adhesion proteins following either activation of the Raf-->MEK-->ERK pathway or expression of the S126A/S130A form of paxillin in mammalian cells.  相似文献   

15.
We have investigated the early in vivo signaling events triggered by serum that lead to activation of the c-fos proto-oncogene in HeLa cells. Both RAF-1 and MEK kinase activities are fully induced within 3 min of serum treatment and quickly decrease thereafter, slightly preceding the activation and inactivation of p42MAPK/ERK2. ERK2 activity correlates tightly with a transient phosphatase-sensitive modification of ternary complex factor (TCF), manifested by the slower electrophoretic mobility of TCF-containing protein-DNA complexes. These induced complexes in turn correlate with the activity of the c-fos, egr-1, and junB promoters. Phorbol ester treatment induces the same events but with slower and prolonged kinetics. Inhibition of serine/threonine phosphatase activities by okadaic acid treatment reverses the repression of the c-fos promoter either after induction or without induction. This corresponds to the presence of the induced complexes and of ERK2 activity, as well as to the activation of a number of other kinases. Inhibition of tyrosine phosphatase activities by sodium vanadate treatment delays but does not block ERK2 inactivation, TCF dephosphorylation, and c-fos repression. The tight linkage in vivo between the activity of MAP kinase, TCF phosphorylation, and immediate-early gene promoter activity is consistent with the notion that a stable ternary complex over the serum response element is a direct target for the MAP kinase signaling cascade. Furthermore, serine/threonine phosphatases are implicated in regulating the kinase cascade, as well as the state of TCF modification and c-fos promoter activity, in vivo.  相似文献   

16.
To elucidate signal transduction pathways leading to neuronal differentiation, we have investigated a conditionally immortalized cell line from rat hippocampal neurons (H19-7) that express a temperature sensitive simian virus 40 large T antigen. Treatment of H19-7 cells with the differentiating agent basic fibroblast growth factor at 39 degrees C, the nonpermissive temperature for T function, resulted in the activation of c-Raf-1, MEK, and mitogen-activated protein (MAP) kinases (ERK1 and -2). To evaluate the role of Raf-1 in neuronal cell differentiation, we stably transfected H19-7 cells with v-raf or an oncogenic human Raf-1-estrogen receptor fusion gene (deltaRaf-1:ER). deltaRaf-1:ER transfectants in the presence of estradiol for 1 to 2 days expressed a differentiation phenotype only at the nonpermissive temperature. However, extended exposure of the deltaRaf-1:ER transfectants to estradiol or stable expression of the v-raf construct yielded cells that extended processes at the permissive as well as the nonpermissive temperature, suggesting that cells expressing the large T antigen are capable of responding to the Raf differentiation signal. deltaRaf-1:ER, MEK, and MAP kinase activities in the deltaRaf-1:ER cells were elevated constitutively for up to 36 h of estradiol treatment at the permissive temperature. At the nonpermissive temperature, MEK and ERKs were activated to a significantly lesser extent, suggesting that prolonged MAP kinase activation may not be sufficient for differentiation. To test this possibility, H19-7 cells were transfected or microinjected with constitutively activated MEK. The results indicate that prolonged activation of MEK or MAP kinases (ERK1 and -2) is not sufficient for differentiation of H19-7 neuronal cells and raise the possibility that an alternative signaling pathway is required for differentiation of H19-7 cells by Raf.  相似文献   

17.
To evaluate the role of mitogen-activated protein (MAP) kinase and other signaling pathways in neuronal cell differentiation by basic fibroblast-derived growth factor (bFGF), we used a conditionally immortalized cell line from rat hippocampal neurons (H19-7). Previous studies have shown that activation of MAP kinase kinase (MEK) is insufficient to induce neuronal differentiation of H19-7 cells. To test the requirement for MEK and MAP kinase (ERK1 and ERK2), H19-7 cells were treated with the MEK inhibitor PD098059. Although the MEK inhibitor blocked the induction of differentiation by constitutively activated Raf, the H19-7 cells still underwent differentiation by bFGF. These results suggest that an alternative pathway is utilized by bFGF for differentiation of the hippocampal neuronal cells. Expression in the H19-7 cells of a dominant-negative Ras (N17-Ras) or Raf (C4-Raf) blocked differentiation by bFGF, suggesting that Ras and probably Raf are required. Expression of dominant-negative Src (pcSrc295Arg) or microinjection of an anti-Src antibody blocked differentiation by bFGF in H19-7 cells, indicating that bFGF also signals through a Src kinase-mediated pathway. Although neither constitutively activated MEK (MEK-2E) nor v-Src was sufficient individually to differentiate the H19-7 cells, coexpression of constitutively activated MEK and v-Src induced neurite outgrowth. These results suggest that (i) activation of MAP kinase (ERK1 and ERK2) is neither necessary nor sufficient for differentiation by bFGF; (ii) activation of Src kinases is necessary but not sufficient for differentiation by bFGF; and (iii) differentiation of H19-7 neuronal cells by bFGF requires at least two signaling pathways activated by Ras and Src.  相似文献   

18.
MAP kinases bind activating kinases, phosphatases, and substrates through docking interactions. Here, we report a 1.9 A crystallographic analysis of inactive ERK2 bound to a "D motif" docking peptide (pepHePTP) derived from hematopoietic tyrosine phosphatase, a negative regulator of ERK2. In this complex, the complete D motif interaction defined by mutagenic analysis is observed, including extensive electrostatic interactions with the "CD" site of the kinase. Large conformational changes occur in the activation loop where the dual phosphorylation sites, which are buried in the inactive form of ERK2, become exposed to solvent in the complex. Similar conformational changes occur in a complex between ERK2 and a MEK2 (MAP/ERK kinase-2)-derived D motif peptide (pepMEK2). D motif peptides are known to bind homologous loci in the MAP kinases p38alpha and JNK1, also inducing conformational changes in these enzymes. However, the binding interactions and conformational changes are unique to each, thus contributing to specificity among MAP kinases.  相似文献   

19.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.  相似文献   

20.
We have identified a direct physical interaction between the stress signaling p38alpha MAP kinase and the mitogen-activated protein kinases ERK1 and ERK2 by affinity chromatography and coimmunoprecipitation studies. Phosphorylation and activation of p38alpha enhanced its interaction with ERK1/2, and this correlated with inhibition of ERK1/2 phosphotransferase activity. The loss of epidermal growth factor-induced activation and phosphorylation of ERK1/2 but not of their direct activator MEK1 in HeLa cells transfected with the p38alpha activator MKK6(E) indicated that activated p38alpha may sequester ERK1/2 and sterically block their phosphorylation by MEK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号