首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we have examined the interaction between CD44 (a hyaluronan (HA) receptor) and the transforming growth factor beta (TGF-beta) receptors (a family of serine/threonine kinase membrane receptors) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunological data indicate that both CD44 and TGF-beta receptors are expressed in MDA-MB-231 cells and that CD44 is physically linked to the TGF-beta receptor I (TGF-betaRI) (and to a lesser extent to the TGF-beta receptor II (TGF-betaRII)) as a complex in vivo. Scatchard plot analyses and in vitro binding experiments show that the cytoplasmic domain of CD44 binds to TGF-betaRI at a single site with high affinity (an apparent dissociation constant (K(d)) of approximately 1.78 nm). These findings indicate that TGF-betaRI contains a CD44-binding site. Furthermore, we have found that the binding of HA to CD44 in MDA-MB-231 cells stimulates TGF-betaRI serine/threonine kinase activity which, in turn, increases Smad2/Smad3 phosphorylation and parathyroid hormone-related protein (PTH-rP) production (well known downstream effector functions of TGF-beta signaling). Most importantly, TGF-betaRI kinase activated by HA phosphorylates CD44, which enhances its binding interaction with the cytoskeletal protein, ankyrin, leading to HA-mediated breast tumor cell migration. Overexpression of TGF-betaRI by transfection of MDA-MB-231 cells with TGF-betaRIcDNA stimulates formation of the CD44.TGF-betaRI complex, the association of ankyrin with membranes, and HA-dependent/CD44-specific breast tumor migration. Taken together, these findings strongly suggest that CD44 interaction with the TGF-betaRI kinase promotes activation of multiple signaling pathways required for ankyrin-membrane interaction, tumor cell migration, and important oncogenic events (e.g. Smad2/Smad3 phosphorylation and PTH-rP production) during HA and TGF-beta-mediated metastatic breast tumor progression.  相似文献   

2.
3.
4.
The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.  相似文献   

5.
The adhesion molecule, CD44, interacts with ankyrin within its cytoplasmic domain and binds to hyaluronic acid (HA) at its extracellular domain. In this study, we focused on the functional domain in ankyrin (in particular, the ankyrin repeat domain [ARD]) responsible for CD44 binding and its role in regulating HA-mediated ovarian tumor cell function. Using recombinant fragments of ankyrin (e.g., ARD and subdomain 1 [S1, aa1-aa217], subdomain 2 [S2, aa218-aa381], subdomain 3 [S3, aa382-aa612], and subdomain 4 [S4, aa613-aa834]) and in vitro binding assays, we determined that the S2 but not S1, S3, or S4 of ARD is the primary ankyrin binding region for CD44. Microinjection of antiglutathione S-transferase (GST)-tagged S2 or GST-tagged ARD fusion protein into CD44-positive ovarian tumor cells (e.g., SKOV3 cell line) promotes ankyrin association with CD44 in plaque-like structures and membrane projections. Additionally, we demonstrated that transfection of SKOV3 cells with S2cDNA or ARD cDNA results in an upregulation of HA-mediated tumor cell migration. Taken together, we believe that the S2 of the ARD plays a pivotal role in the direct binding to CD44 and promotes the cytoskeleton activation required for HA-mediated function such as ovarian tumor cell migration.  相似文献   

6.
7.
CD44 is the major hyaluronan cell surface receptor and functions as an adhesion molecule in many different cell types, including human breast epithelial cells. The coexpression of certain CD44 variants (CD44v), such as CD44v (v10/ex14), with CD44s (standard form) appears to be closely associated with human breast tumor metastasis. In this study we have established a stable transfection of CD44v (v10/ex14) cDNA into nontumorigenic human breast epithelial cells (HBL100) which contain endogenous CD44s. Our results indicate that coexpression of both CD44v (v10/ex14) and CD44s alters the following important biological properties of these cells: 1) there is a significant reduction in hyaluronic acid (HA)-mediated cell adhesion; 2) there is an increased migration capability in collagen-matrix gel; and 3) these cells constitutively produce certain angiogenic factors and effectively promote tumorigenesis in athymic nude mice. These findings suggest that coexpression of CD44v (v10/ex14) and CD44s may trigger the onset of cell transformation required for breast cancer development. J. Cell. Physiol. 171:152–160, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
IGF2BP1     
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) controls the cytoplasmic fate of specific target mRNAs including ACTB and CD44. During neural development, IGF2BPs promote neurite protrusion and the migration of neuronal crest cells. In tumor-derived cells, IGF2BP1 enhances the formation of lamellipodia and invadopodia. Accordingly, the de novo synthesis of IGF2BP1 observed in primary malignancies was reported to correlate with increased metastasis and an overall poor prognosis. However, if and how the protein enhances metastasis remains controversial. In recent studies, we reveal that IGF2BP1 promotes the directed migration of tumor-derived cells in vitro by controlling the expression of MAPK4 and PTEN. The IGF2BP1-facilitated inhibition of MAPK4 mRNA translation interferes with MK5-directed phosphorylation of the heat shock protein 27 (HSP27). This limits G-actin sequestering by phosphorylated HSP27, enhances cell adhesion and elevates the velocity of tumor cell migration. Concomitantly, IGF2BP1 promotes the expression of PTEN by interfering with PTEN mRNA turnover. This results in a shift of cellular PtdIns(3,4,5)P3/PtdIns(4,5)P2 ratios and enhances RAC1-dependent cell polarization which finally promotes the directionality of tumor cell migration. These findings identify IGF2BP1 as a potent oncogenic factor that regulates the adhesion, migration and invasiveness of tumor cells by modulating intracellular signaling.  相似文献   

9.
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) controls the cytoplasmic fate of specific target mRNAs including ACTB and CD44. During neural development, IGF2BPs promote neurite protrusion and the migration of neuronal crest cells. In tumor-derived cells, IGF2BP1 enhances the formation of lamellipodia and invadopodia. Accordingly, the de novo synthesis of IGF2BP1 observed in primary malignancies was reported to correlate with increased metastasis and an overall poor prognosis. However, if and how the protein enhances metastasis remains controversial. In recent studies, we reveal that IGF2BP1 promotes the directed migration of tumor-derived cells in vitro by controlling the expression of MAPK4 and PTEN. The IGF2BP1-facilitated inhibition of MAPK4 mRNA translation interferes with MK5-directed phosphorylation of the heat shock protein 27 (HSP27). This limits G-actin sequestering by phosphorylated HSP27, enhances cell adhesion and elevates the velocity of tumor cell migration. Concomitantly, IGF2BP1 promotes the expression of PTEN by interfering with PTEN mRNA turnover. This results in a shift of cellular PtdIns(3,4,5)P3/PtdIns(4,5)P2 ratios and enhances RAC1-dependent cell polarization which finally promotes the directionality of tumor cell migration. These findings identify IGF2BP1 as a potent oncogenic factor that regulates the adhesion, migration and invasiveness of tumor cells by modulating intracellular signaling.  相似文献   

10.
11.
Promyelocytic leukemia HL-60 cells promoted by PMA to differentiate along the monocyte pathway adhere to tissue culture plates. To explore the regulation of adhesion molecules in cells promoted to differentiate, the expression and secretion of osteopontin (OPN) and expression of associated cell surface receptors, CD44 and integrin subunits αv, β3, β1, were examined. Results were as follows: (1) PMA induced OPN mRNA and OPN secretion into media; (2) untreated cells expressed β1 and CD44 mRNA, and PMA induced αv and β3 mRNA and increased β1 and CD44 mRNA expression; (3) PMA increased levels of αv, β3, β1 and CD44 protein on the cell surface; and (4) retinoic acid, which promotes granulocytic differentiation of HL-60 cells, did not affect OPN, αv, β3, β1, or CD44 mRNA or protein expression. These data suggest that induction of OPN and associated receptors may play a role during monocytic differentiation of HL-60 cells. J. Cell. Physiol. 175:229–237, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

13.
Invadopodia are membrane protrusions dynamically assembled by invasive cancer cells in contact with the extracellular matrix (ECM). Invadopodia are enriched by the structural proteins actin and cortactin as well as metalloproteases such as MT1-MMP, whose function is to degrade the surrounding ECM. During metastasis, invadopodia are necessary for cancer cell intravasation and extravasation. Although signaling pathways involved in the assembly and function of invadopodia are well studied, few studies address invadopodia dynamics and how the cell-ECM interactions contribute to cell invasion. Using iterative analysis based on time-lapse microscopy and mathematical modeling of invasive cancer cells, we found that cells oscillate between invadopodia presence and cell stasis—termed the “invadopodia state”—and invadopodia absence during cell translocation—termed the “migration state.” Our data suggest that β1-integrin-ECM binding and ECM cross-linking control the duration of each of the two states. By changing the concentration of cross-linkers in two-dimensional and three-dimensional cultures, we generate an ECM in which 0–0.92 of total lysine residues are cross-linked. Using an ECM with a range of cross-linking degrees, we demonstrate that the dynamics of invadopodia-related functions have a biphasic relationship to ECM cross-linking. At intermediate levels of ECM cross-linking (0.39), cells exhibit rapid invadopodia protrusion-retraction cycles and rapid calcium spikes, which lead to more frequent MT1-MMP delivery, causing maximal invadopodia-mediated ECM degradation. In contrast, both extremely high or low levels of cross-linking lead to slower invadopodia-related dynamics and lower ECM degradation. Additionally, β1-integrin inhibition modifies the dynamics of invadopodia-related functions as well as the length of time cells spend in either of the states. Collectively, these data suggest that β1-integrin-ECM binding nonlinearly translates small physical differences in the extracellular environment to differences in the dynamics of cancer cell behaviors. Understanding the conditions under which invadopodia can be reduced by subtle environment-targeting treatments may lead to combination therapies for preventing metastatic spread.  相似文献   

14.
The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.  相似文献   

15.
The spatial structure of Alzheimer’s amyloid Aβ10–35-NH2 peptide in aqueous solution at pH 7.3 and in SDS micelles was investigated by use of a combination of the residual dipolar coupling method and two-dimensional NMR spectroscopy (TOCSY, NOESY). At pH 7.3 Aβ10–35-NH2 adopts a compact random-coil conformation whereas in SDS micellar solutions two helical regions (residues 13–23 and 30–35) of Aβ10–35-NH2 were observed. By use of experimental data, the structure of “peptide–micelle” complex was determined; it was found that Aβ10–35-NH2 peptide binds to the micelle surface at two regions (residues 17–20 and 29–35).  相似文献   

16.
The leukocyte CD44 and CD45 cell surface receptors are associated via the linker proteins ankyrin and fodrin with the cytoskeleton, which itself is important in immune cell functions such as adherence, chemotaxis, and phagocytosis. The effects of rat antihuman CD44 and CD45 monoclonal antibodies on phagocytosis of fluoresceinated heat-killed Staphylococcus aureus 502A by normal human neutrophils (PMNs) during 2 hr incubation in RPMI-1640 was studied via flow cytometry and confocal microscopy. Flow cytometry was performed using an excitation wavelength of 488 nm, fluorescence being measured at 515–560 nm on 50,000 PMNs per sample. Confocal microscopy was performed on samples after further incubation with rhodamine-conjugated antiankyrin. Anti-CD44 resulted in an increase of 27–31% compared to control (P = 0.004) in the proportion of PMNs fluorescing, an increase of 17–24% (P = 0.001) in mean intracellular fluorescence per PMN, and an increase in total PMN fluorescence of 50–58% compared to control (P < 0.001). In contrast, anti-CD45 had little effect on phagocytosis. Colchicine (a microtubule-disrupting agent) enhanced, whereas cytochalasin-D (a microfilament inhibitor) inhibited bacterial phagocytosis; cytochalasin-D completely abrogated the effect of anti-CD44 on this PMN function. Hyaluronic acid augmented phagocytosis by an increment similar to that observed with anti-CD44. Two-color flow cytometry and confocal microscopy demonstrated that ankyrin always colocalized with ingested fluorescein isothiocyanate (FITC)-labeled bacteria. These data strongly suggest that CD44 is involved in bacterial phagocytosis, provide further evidence of CD44 receptor linkage to cytoskeletal elements in human leukocytes, and suggest that ankyrin has a significant role in the transport of phagosomes. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
Pro‐ and anti‐inflammatory cytokines may influence proliferation, migration, invasion, and other cellular events of prostate cancer (PCa) cells. The hyaluronan receptor CD44, which is regulated by Interleukin (IL)‐4, is a prostate basal cell marker. CD44high/CD49bhigh expressing cells have been demonstrated to have tumor‐initiating characteristics. Here, we aimed to analyze the effects of long‐term IL‐4 treatment on CD44/CD49b expression, migration, proliferation, and clonogenic potential of basal‐like PCa cells. To this end PC3 cells were treated over 30 passages with 5 ng/mL IL‐4 (PC3‐IL4) resulting in an increased population of CD44high expressing cells. This was concurrent with a clonal outgrowth of cuboid‐shaped cells, with increased size and light absorbance properties. Flow cytometry revealed that the PC3‐IL4 CD44high expressing subpopulation corresponds to the CD49bhigh population. Isolation of the PC3‐IL4 CD44high/CD49bhigh subpopulation via fluorescence‐associated cell sorting showed increased migrative, proliferative, and clonogenic potential compared to the CD44low/CD49blow subpopulation. In conclusion, IL‐4 increases a PC3 subpopulation with tumor‐initiating characteristics. Thus, IL‐4, similar to other cytokines may be a regulator of tumor‐initiation and hence, may present a suitable therapy target in combination with current treatment options.  相似文献   

19.
The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence, GSCs with highly invasive and highly migratory activities must assume a less-motile state and proliferate to regenerate tumor mass. Elucidating the molecular mechanism underlying this transition from a highly invasive phenotype to a less-invasive, proliferative tumor could facilitate the identification of effective molecular targets for treating GBM. Here, we demonstrate that severe hypoxia (1% O2) upregulates CD44 expression via activation of hypoxia-inducible factor (HIF-1α), inducing GSCs to assume a highly invasive tumor. In contrast, moderate hypoxia (5% O2) upregulates osteopontin expression via activation of HIF-2α. The upregulated osteopontin inhibits CD44-promoted GSC migration and invasion and stimulates GSC proliferation, inducing GSCs to assume a less-invasive, highly proliferative tumor. These data indicate that the GSC phenotype is determined by interaction between CD44 and osteopontin. The expression of both CD44 and osteopontin is regulated by differential hypoxia levels. We found that CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo. Mouse brain tumors generated from CD44-knockdown GSCs exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene decreased GSC proliferation. These results suggest that interaction between CD44 and osteopontin plays a key role in tumor progression in GBM; inhibition of both CD44 and osteopontin may represent an effective therapeutic approach for suppressing tumor progression, thus resulting in a better prognosis for patients with GBM.  相似文献   

20.
For cancer metastasis, tumor cells present in the circulation must first adhere to the endothelium. Integrins play a central role in leukocyte adhesion to the endothelium and subsequent migration into tissues. The majority of tumor cells derived from solid cancers, including breast cancer, do not express integrins. We investigated the mechanisms of adhesion and transendothelial migration of cancer cells using breast carcinoma cell lines. Our results showed the following features of breast cancer cells: (1) HGF stimulated breast cancer cells by up-regulating CD44 expression in a concentration-dependent manner. (2) the maximum level of HGF-induced CD44 up-regulation on breast cancer cell lines occurred within 3 h. (3) HGF-induced up-regulation of CD44 was mediated by the tyrosine kinase signaling pathway. (4) HGF induced CD44-mediated adhesion of tumor cell lines to bone marrow-derived endothelial cells. (5) HGF did not change rolling of breast cancer cell lines on bone marrow-derived endothelial cells, but enhanced firm adhesion of cancer cells on endothelial cells under shear stress conditions. (6) HGF increased transendothelial migration of cancer cells. Our results indicate that HGF stimulates CD44-mediated adhesion of breast cancer cells to bone marrow-derived endothelial cells, which subsequently results in transendothelial migration of tumor cells. These results suggest that CD44 may confer the metastatic properties of breast cancer cells and, therefore, could be used as a target in future molecular cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号