首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation was carried out to study the expression of major cytochrome P450 (CYP) isozymes in streptozotocin-induced diabetes with concomitant insulin therapy. Male Sprague-Dawley rats were randomly assigned to untreated control, streptozotocin-induced diabetic, insulin-treated groups and monitored for 4 weeks. Uncontrolled hyperglycemia in the early phase of diabetes resulted in differential regulation of cytochrome P450 isozymes. CYP1B1, CYP1A2, heme oxygenase (HO)-2 proteins and CYP1A2-dependent 7-ethoxyresorufin O-deethylase (EROD) activity were upregulated in the hepatic microsomes of diabetic rats. Insulin therapy ameliorated EROD activity and the expression of CYP1A2, CYP1B1 and HO-2 proteins. In addition, CYP2B1 and 2E1 proteins were markedly induced in the diabetic group. Insulin therapy resulted in complete amelioration of CYP2E1 whereas CYP2B1 protein was partially ameliorated. By contrast, CYP2C11 protein was decreased over 99% in the diabetic group and was partially ameliorated by insulin therapy. These results demonstrate widespread alterations in the expression of CYP isozymes in diabetic rats that are ameliorated by insulin therapy.  相似文献   

2.
3.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   

4.
5.
6.
7.
The metabolism of diazinon, an organophosphorothionate pesticide, to diazoxon and pyrimidinol has been studied in incubations with hepatic microsomes from control Sprague–Dawley (SD) rats or SD rats treated with different P450‐specific inducers (phenobarbital, dexamethasone, β‐napthoflavone, and pyrazole). Results obtained indicate an involvement of CYP2C11, CYP3A2, and CYP2B1/2, whereas CYP2E1 and CYP1A1 do not contribute to the pesticide oxidative metabolism. Indeed, diazinon was metabolized by microsomes from control rats; among the inducers, phenobarbital and dexamethasone only increased the production of either metabolites, although to different extents. The production of the two metabolites is self‐limiting, due to P450 inactivation; therefore, the inhibition of CYP‐specific monooxygenase activities after diazinon preincubation has been used to selectively identify the competent CYPs in diazinon metabolism. Results indicate that, after diazinon preincubation, CYP3A2‐catalyzed reactions (2β‐ and 6β‐testosterone hydroxylation) are very efficiently inhibited; CYP2C11‐ and CYP2B1/2‐catalyzed reactions (2α‐ and 16β‐testosterone hydroxylation, respectively) are weakly inhibited, while CYP2E1‐, CYP2A1/2‐, and CYP1A1/2‐related activities were unaffected. Results obtained by using chemical inhibitors or antibodies selectively active against specific CYPs provide a direct evidence for the involvement of CYP2C11, CYP3A2, and CYP2B1/2, indicating that each of them contributed about 40–50% of the diazinon metabolism, in hepatic microsomes from untreated, phenobarbital‐, and dexamethasone‐treated rats, respectively. The higher diazoxon/pyrimidinol ratio observed after phenobarbital‐treatment together with the significantly more effective inhibition toward diazoxon production exerted by metyrapone in microsomes from phenobarbital‐treated rats supports the conclusion that CYP2B1/2 catalyze preferentially the production of diazoxon. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 53–61, 1999  相似文献   

8.
Induction of cytochrome P450 (CYP) by drugs is one of major concerns for drug-drug interactions. Thus, the assessment of CYP induction by novel compounds is a vital component in the drug discovery and development processes. Primary human hepatocytes are the preferred in vitro model for predicting CYP induction in vivo. However, their use is hampered by the erratic supply of human tissue and donor-to-donor variability. Although cryopreserved hepatocytes have been recommended for short-term applications in suspension, their use in studies on induction of enzyme activity has been limited because of poor attachment and response to enzyme inducers. In this study, we report culture conditions that allowed the attachment of cryopreserved human hepatocytes and responsiveness to CYP inducers. We evaluated the inducibility of CYP1A1/2 and CYP3A4 enzymes in cryopreserved hepatocytes from three human donors. Cryopreserved human hepatocytes were cultured in serum-free medium for 4 d. They exhibited normal morphology and measurable viability as evaluated by the reduction of tetrazolium salts (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) by cellular dehydrogenases. Treatment with beta-naphthoflavone (10 microM) for 3 d increased ethoxyresorufin-O-deethylase activity (CYP1A1/2) by 6- to 11-fold over untreated cultures and increased CYP1A2 messenger ribonucleic acid (mRNA) expression by three- to eightfold. Similarly, treatment of cryopreserved human hepatocytes with rifampicin (25 microM) for 3 d increased testosterone 6 beta-hydroxylase activity (CYP3A4) by five- to eightfold over untreated cultures and increased CYP3A4 mRNA expression by four- to eightfold. The results suggest that cryopreserved human hepatocytes can be a suitable in vitro model for evaluating xenobiotics as inducers of CYP1A1/2 and CYP3A4 enzymes.  相似文献   

9.
10.
Studies initiated to investigate the distribution of cytochrome P450 2B (CYP2B) isoenzymes in rat brain cells revealed significant activity of CYP2B-dependent 7-pentoxyresorufin-O-dealkylase (PROD) in microsomes prepared from both, cultured rat brain neuronal and glial cells. Neuronal cells exhibited 2-fold higher activity of PROD than the glial cells. RT-PCR and immunocytochemical studies demonstrated significant constitutive mRNA and protein expression of CYP2B in cultured neuronal and glial cells. Induction studies with phenobarbital (PB), a known CYP2B inducer, revealed significant concentration dependent increase in the activity of PROD in cultured brain cells with glial cells exhibiting greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies indicating differences in the induction of CYP2B1 and 2B2 mRNA as well as protein expression in the cultured brain cells. Furthermore, a greater magnitude of induction was observed in CYP2B2 than CYP2B1 in the brain cells. Our data indicating differences in the expression and sensitivity of the CYP2B isoenzymes in cultured rat brain cells will help in identifying and distinguishing xenobiotic metabolizing capability of these cells and understanding the vulnerability of the specific cell types toward neurotoxins.  相似文献   

11.
Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human.  相似文献   

12.
13.
14.
To explore the enantioselectivity of ligand interaction with the putative phenobarbital receptor, the pharmacodynamics of cytochrome P450 2B (CYP2B) induction by racemic 5-ethyl-5-phen-ylhydantoin and its two enantiomers were investigated in the male F344/NCr rat and in cultured adult male rat hepatocytes. Steady-state serum drug concentrations, measured following 14 days of administration of the compounds in the diet (0-1320 ppm, n = 3 rats per group), were used as an approximation of intrahepatocellular drug concentration. The serum xenobiotic concentrations associated with half-maximal hepatic CYP2B induction were 5-10 μM, based on measurement of pentoxy- or benzyloxyresorufin O-dealkylation activities, or immunoreactive CYP2B1 protein. The corresponding potency values in the hepatocyte culture experiments were 8-12 μM, based on measurement of total cellular RNA coding for CYP2B1. In both the in vivo and the hepatocyte culture experiments, the potencies for CYP2B induction were essentially equivalent for the racemate and the individual enantiomers of 5-ethyl-5-phenylhydantion. In the case of this compound, there would appear to be no enantioselectivity for CYP2B induction. This finding may be interpreted as evidence against receptor mediation in the induction of CYP2B activity, although it is also possible that a receptor is involved that does not exhibit enantioselectivity.  相似文献   

15.
Expression and monooxygenase activity of various cytochrome P450 (CYP) enzymes along with constitutive androstane (CAR) and the pregnane X (PXR) receptors were investigated in the brain of control and phenobarbital-treated rabbits (80 mg/kg for 4 days). RT-PCR analysis, using specific primers, demonstrated that in control rabbits mRNAs of CYP 2A10, 2B4/5 and 3A6 were expressed, though to a different extent, in the liver, as well as in brain cortex, midbrain, cerebellum, striatum, hippocampus and hypothalamus, whilst CYP2A11 and 4B1 were not expressed in the hypothalamus. CAR was expressed in liver and all the brain regions examined, whereas the PXR was expressed only in liver and cortex. Real time RT-PCR analysis demonstrated that in vivo treatment with phenobarbital, in contrast with what happened in liver, did not induce the expression of CYP 2B4/5 mRNA in cortex, midbrain and cerebellum. NADPH cytochrome c reductase and some other enzymatic activities markers of CYP 2A, 2B, 3A and 4B activities were studied in liver microsomes as well as in microsomes and mitochondria of brain cortex, midbrain and cerebellum of control and phenobarbital-treated rabbits. In contrast to what was observed in liver, phenobarbital treatment did not induce the aforementioned monooxygenase activities in brain. However, we cannot exclude that a longer phenobarbital treatment may lead to a significant induction of CYP activities in brain. These findings indicated that brain CYPs, despite the presence of CAR, were resistant to phenobarbital induction, indicating a possible different regulation of these enzymes between brain and liver.  相似文献   

16.
17.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

18.
19.
20.
Direct electron transfer has been demonstrated between cytochrome P450 2B4 (CYP2B4), P450 1A2 (CYP1A2), sterol 14α-demethylase (CYP51MT) and screen printed graphite electrodes, modified by gold nanoparticles and didodecyldimethyl ammonium bromide (DDAB). The proposed method for preparation of enzymatic nanostructured electrodes may be used for electrodetection of this hemoprotein provided that 2–200 pmol P450 per electrode has been adsorbed. Electron transfer, direct electrochemical reduction and interaction with P450 substrates (oxygen, benzphetamine, lanosterol) and inhibitor ketoconazole were analyzed using cyclic voltammetry (CV), square wave (SWV) or differential pulse (DPV) voltammetry, and amperometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号