首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane permeability is very helpful for the optimization of effective cryopreservation protocols. In this study, experiments were performed to determine these characteristics for immature (germinal vesicle (GV)) and in vitro matured (metaphase II (MII)) bovine oocytes within 4-37 °C, and a new step-wise adding and diluting protocol for ethylene glycol (EG) was developed and verified. Osmotically inactive volumes (Vb) of GV and MII oocytes were calculated to be 16.1% and 26.1%. The membrane permeability of the oocytes to water (Lp) in the presence of EG were between 0.08-0.18 and 0.14-0.28 μm/min/atm, and the membrane permeability of the oocytes to solutes (Ps) were between 0.0011-0.0038 and 0.0029-0.0061 cm/min for GV and MII oocytes, respectively. The activation energies (Ea) for Lp and Ps in the presence of EG were 3.68 and 6.84 kcal/mol for GV oocyte, while 3.62 and 0.83-9.08 kcal/mol for MII oocyte. The data indicated that Lp and Ps varied significantly between developmental stages and among temperatures evaluated. Based on these results, different protocols for EG adding and diluting from oocytes were developed and tested. The assessment of cleavage rate and embryonic development in vitro confirmed that the designed 4-step adding 2-step diluting protocol indicated a better outcome. The present study is helpful for better understanding of cryobiological properties and the design of cryopreservation protocols for bovine oocytes.  相似文献   

2.
The developmental competence of bovine follicular oocytes that had been meiotically arrested with the phosphokinase inhibitor 6-dimethylaminopurine (6-DMAP) was studied. After 24 h in vitro culture with 2 mM 6-DMAP, 85 ± 12% of the oocytes were at the germinal vesicle stage compared to 97 ± 3% at the start of culture (P > 0.05). After release of the 6-DMAP inhibition, followed by 24 h IVM, 82 ± 18% were at MII stage, compared with 93 ± 7% in the control group (P > 0.05). The 6-DMAP oocytes displayed a much higher frequency of abnormal MII configurations than the control oocytes (67% vs 23%; P < 0.0001). In addition spontaneous oocyte activation was more frequent than among control oocytes (5% vs 0.3%; P 0.0006). After IVF of 6-DMAP oocytes, normal fertilization was lower (76 ± 8% vs 89 ± 7%; P < 0.01), oocyte activation higher (11 ± 5% vs 2 ± 2%; P < 0.01), and polyspermy slightly but not significantly higher (8 ± 7% vs 4 ± 4%; P > 0.05), compared with the control group. Cleavage was lower (61 ± 13% vs 81 ± 6%; P < 0.001), as well as day 8 blastocyst formation (17 ± 7% vs 36 ± 8%; P < 0.001). The MII kinetics was different for 6-DMAP and control oocytes. Maximum MII levels were reached at 22 h IVM in both groups, but 50% MII was reached at 17 h in 6-DMAP oocytes, compared to 20 h in control oocytes. Ultrastructure of MII oocytes was similar in the two groups, but in 6-DMAP oocytes the ooplasmic vesicle pattern at GV was at a more advanced stage than in control oocytes. In conclusion, 6-DMAP exposure of GV oocytes prior to IVM induce asynchronous cytoplasmic maturation, leading to aberrant MII kinetics. Thus, at the time of insemination a smaller cohort of oocytes will be at the optimal stage for normal fertilization and subsequent blastocyst development. Mol. Reprod. Dev. 50:334–344, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Cryopreservation of bovine oocytes would be beneficial both for nuclear transfer and for preservation efforts. The overall objective of this study was to evaluate the viability as well as the cryodamage to the nucleus vs. cytoplasm of bovine oocytes following freezing-thawing of oocytes at immature (GV) and matured (MII) stages using in vitro fertilization (IVF), parthenogenetic activation, or nuclear transfer assays. Oocytes were collected from slaughterhouse ovaries. Oocytes at the GV, MII, or MII but enucleated (MIIe) stages were cryopreserved in 5% (v/v) ethylene glycol; 6% (v/v) 1,2-propanediol; and 0.1-M sucrose in PBS supplemented with 20% (v/v) fetal bovine serum. Frozen-thawed oocytes were subjected to IVF, parthenogenetic activation, or nuclear transfer assays. Significantly fewer GV oocytes survived (i.e., remained morphologically intact during freezing-thawing) than did MII oocytes (47% vs. 84%). Subsequent development of the surviving frozen-thawed GV and MII oocytes was not different (58% and 60% cleavage development; 7% and 12% blastocyst development at Day 9, respectively, P > 0.05). Parthenogenetic activation of frozen-thawed oocytes resulted in significantly lower rates of blastocyst development for the GV than the MII oocyte groups (1% vs. 14%). Nuclear transfer with cytoplasts derived from frozen-thawed GV, MII, MIIe, and fresh-MII control oocytes resulted in 5%, 16%, 14%, and 17% blastocyst development, respectively. However, results of preliminary embryo transfer trials showed that fewer pregnancies were produced from cloned embryos derived from frozen oocytes or cytoplasts (9%, n = 11 embryos) than from fresh ones (19%, n = 21 embryos). Transfer of embryos derived by IVF from cryopreserved GV and MII oocytes also resulted in term development of calves. Our results showed that both GV and MII oocytes could survive freezing and were capable of developing into offspring following IVF or nuclear transfer. However, blastocyst development of frozen-thawed oocytes remains poorer than that of fresh oocytes, and our nuclear transfer assay suggests that this poorer development was likely caused by cryodamage to the oocyte cytoplasm as well as to the nucleus. Mol. Reprod. Dev. 51:281–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Gupta MK  Uhm SJ  Lee HT 《Theriogenology》2007,67(2):238-248
Cryopreservation of normal, lipid-containing porcine oocytes has had limited practical success. This study used solid surface vitrification (SSV) of immature germinal vesicle (GV) and mature meiosis II (MII) porcine oocytes and evaluated the effects of pretreatment with cytochalasin B, cryoprotectant type (dimethylsulfoxide (DMSO), ethylene glycol (EG), or both), and warming method (two-step versus single-step). Oocyte survival (post-thaw) was assessed by morphological appearance, staining (3',6'-diacetyl fluorescein), nuclear maturation, and developmental capacity (after in vitro fertilization). Both GV and MII oocytes were successfully vitrified; following cryopreservation in EG, more than 60% of GV and MII stage porcine oocytes remained intact (no significant improvement with cytochalasin B pretreatment). Oocytes (GV stage) vitrified in DMSO had lower (P<0.05) nuclear maturation rates (31%) than those vitrified in EG (51%) or EG+DMSO (53%). Survival was better with two-step versus single-step dilution. Despite high survival rates, rates of cleavage (20-26%) and blastocyst formation (3-9%) were significantly lower than for non-vitrified controls (60 and 20%). In conclusion, SSV was a very simple, rapid, procedure that allowed normal, lipid-containing, GV or MII porcine oocytes to be fertilized and develop to the blastocyst stage in vitro.  相似文献   

5.
Szurek EA  Eroglu A 《PloS one》2011,6(11):e27604
The objective of this study was to elucidate the toxicity of widely used penetrating cryoprotective agents (CPAs) to mammalian oocytes. To this end, mouse metaphase II (M II) oocytes were exposed to 1.5 M solutions of dimethylsulfoxide (DMSO), ethylene glycol (EG), or propanediol (PROH) prepared in phosphate buffered saline (PBS) containing 10% fetal bovine serum. To address the time- and temperature-dependence of the CPA toxicity, M II oocytes were exposed to the aforementioned CPAs at room temperature (RT, ~23°C) and 37°C for 15 or 30 minutes. Subsequently, the toxicity of each CPA was evaluated by examining post-exposure survival, fertilization, embryonic development, chromosomal abnormalities, and parthenogenetic activation of treated oocytes. Untreated oocytes served as controls. Exposure of MII oocytes to 1.5 M DMSO or 1.5 M EG at RT for 15 min did not adversely affect any of the evaluated criteria. In contrast, 1.5 M PROH induced a significant increase in oocyte degeneration (54.2%) and parthenogenetic activation (16%) under same conditions. When the CPA exposure was performed at 37°C, the toxic effect of PROH further increased, resulting in lower survival (15%) and no fertilization while the toxicity of DMSO and EG was still insignificant. Nevertheless, it was possible to completely avoid the toxicity of PROH by decreasing its concentration to 0.75 M and combining it with 0.75 M DMSO to bring the total CPA concentration to a cryoprotective level. Moreover, combining lower concentrations (i.e., 0.75 M) of PROH and DMSO significantly improved the cryosurvival of MII oocytes compared to the equivalent concentration of DMSO alone. Taken together, our results suggest that from the perspective of CPA toxicity, DMSO and EG are safer to use in slow cooling protocols while a lower concentration of PROH can be combined with another CPA to avoid its toxicity and to improve the cryosurvival as well.  相似文献   

6.
Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.  相似文献   

7.
Cumulus cell-enclosed bovine oocytes in germinal vesicle (GV) and in metaphase II (MII) stages were cryopreserved. Different concentrations (1 M; 1.5 M) of various cryoprotectants (glycerol, PROH, DMSO) were tested. After thawing, the oocytes were exposed to various carbohydrates (sucrose, lactose, trehalose) at a concentration of 0.1 M and 0.25 M for cryoprotectant removal. Developmental capacity of the frozen-thawed oocytes was studied by in vitro maturation, fertilization and culture. We found no difference in subsequent development using glycerol or PROH for GV and MII oocytes. The DMSO treatment led to significantly better cleavage and development up to 4-cell stage in MII oocytes. Development beyond the 8-cell stage was obtained only when unmatured oocytes were frozen. No difference in the efficiency of the 3 cryoprotectants was detected in MII oocytes. However, in GV oocytes, glycerol and PROH yielded significantly better cleavage and 4-cell rate compared to DMSO (P<0.001). Influence of the concentration of a cryoprotectant on development was not observed in GV or MII oocytes. Among the 3 cryoprotectants, DMSO was less suitable, at both concentrations, than PROH and glycerol for the development of 6- to 8-cell stage embryos in the GV group. In the MII group, 1.5 M DMSO was as efficient as PROH and as glycerol at a 1.5-M concentration, and it was more efficient than 1 M glycerol. The use of carbohydrates during rehydration did not render a beneficial effect at either of the 2 concentrations, and when no carbohydrates were used in the MII group the oocytes cleaved better than GV oocytes.  相似文献   

8.
9.
In the present study, we examined the ability of immature germinal vesicle (GV) and subjected to in vitro matured (MII) yak oocytes to survive after cryopreservation as well as their subsequent development following in vitro maturation and fertilization. Both GV and MII oocytes were cryopreserved by using two different vitrification solutions (VS); VS-I contained 10% ethylene glycol (EG) and 10% dimethylsulfoxide (DMSO) in TCM-199 + 20% (v/v) fetal calf serum (FCS) whereas VS-II contained 40% EG + 18% Ficoll + 0.5 M sucrose in TCM-199 + 20% FCS. The percentage of oocytes found to be morphologically normal was greater (P < 0.01) in VS-I group than in VS-II group. Rates of cleavage (30.6–42.2%) and blastocyst formation (2.9–8.9%) did not differ among groups, but were lower than in unfrozen control (55.7% and 25.4%, P < 0.01). These results show that a combination of EG and DMSO or EG, Ficoll and sucrose can be used to cryopreserve yak oocytes in French straws.  相似文献   

10.
This study was conducted to investigate the effect of vitrification on survival rate and cytoskeleton gene expression during yak oocyte maturation. The yak oocytes were incubated for 0?h [germinal vesicle (GV) stage] and in vitro matured for 24?h [metaphase II (MII) stage] to obtain immature and mature oocytes. Survival rate after vitrification were compared between immature and mature yak oocytes and cytoskeleton-related genes [cytokeratin 8 (CK8), β-actin (ACTB), and gap junction protein, alpha 1 (GJA1)] were tested by real-time PCR. Our results showed that MII stage survival rate after open pulled straw vitrification (35.60%) is significantly higher than GV stage (25.90%) oocytes. Furthermore, expression of CK8, ACTB, and GJA1 in MII stage oocytes are also significantly higher than GV stage oocytes. In conclusion, our study demonstrated that higher expression of GJA1, CK8, and ACTB in vitrify-warmed MII stage oocytes when compared with GV stage oocytes and such discrepancy might result in higher survival rate in vitrify-warmed MII stage oocytes.  相似文献   

11.
The ability to successfully cryopreserve mammalian oocytes has numerous practical, economical and ethical benefits, which may positively impact animal breeding programs and assisted conception in humans. However, oocyte survival and development following vitrification remains poor. The aim of the present study was (1) to evaluate the effect of the presence of cumulus cells on the outcome of vitrification of immature (GV) or mature (MII) bovine oocytes, (2) to compare empirical and theoretical vitrification protocols, and (3) to assess the effect of adding ice blockers to vitrification media on survival and development competence of bovine oocytes following vitrification using the Cryotop method. In Experiment 1, cumulus-enclosed and partially-denuded GV and MII oocytes were vitrified in 15% EG + 15% Me2SO + 0.5 M sucrose in two steps. In Experiment 2, GV oocytes were vitrified either as above or using theoretical modeling based on permeability and osmotic tolerance characteristics in 30% EG + 11.4% trehalose in three steps or 40% EG + 11.4% trehalose in four steps. In Experiment 3, GV oocytes were vitrified in media supplemented or not with 1 of 2 ice blockers (21st Century Medicine, Fontana, CA) 1% X-1000, 1% Z-1000 or both in three steps. In Experiment 1, the survival, cleavage and blastocyst rate of cumulus-enclosed oocytes was significantly higher than those of partially-denuded oocytes when vitrified at the GV stage (93.8% vs. 81.3%, 65.8% vs. 47.3%, 11.3% vs. 4.0%, respectively, P < 0.05). However, no significant effect of cumulus cover was detected between the two groups when vitrified at MII (93.0% vs. 91.8%, 35.2% vs. 36.8%, 5.0% vs. 4.4%, respectively). Furthermore, cumulus-enclosed oocytes vitrified at the GV stage exhibited significantly higher developmental competence than those vitrified at the MII stage (P < 0.05). In Experiment 2, there were no significant differences in the survival, cleavage and blastocyst rate among three protocols (86.0% vs. 92.8% vs. 91.2%, 44.8% vs. 54.4% vs. 45.6%, 5.0% vs. 5.4% vs. 4.0%, respectively). However, cleavage and blastocyst rate were significantly lower (P < 0.05) than non-vitrified control oocytes. In Experiment 3, the presence of ice blockers did not alter the cleavage rate or blastocyst development (P > 0.05). In conclusion, cumulus-enclosed GV bovine oocytes survived vitrification and subsequently developed at higher rates than MII oocytes using Cryotop method and conventional IVF procedure. Theoretical analysis of permeability characteristics and tolerance limits could not explain the low developmental competence of vitrified oocytes.  相似文献   

12.
We tested the hypothesis that meiotic competence of dog oocytes is tightly linked with donor follicle size and energy metabolism. Oocytes were recovered from small (<1 mm diameter, n = 327), medium (1–<2 mm, n = 292) or large (≥2 mm, n = 102) follicles, cultured for 0, 24, or 48 hr, and then assessed for glycolysis, glucose oxidation, pyruvate uptake, glutamine oxidation, and nuclear status. More oocytes (P < 0.05) from large follicles (37%) reached the metaphase‐II (MII) stage than from the small group (11%), with the medium‐sized class being intermediate (18%; P > 0.05). Glycolytic rate increased (P < 0.05) as oocytes progressed from the germinal vesicle (GV) to MII stage. After 48 hr of culture, oocytes completing nuclear maturation had higher (P < 0.05) glycolytic rates than those arrested at earlier stages. GV oocytes recovered from large follicle oocytes had higher (P < 0.05) metabolism than those from smaller counterparts at culture onset. MII oocytes from large follicles oxidized more (P < 0.05) glutamine than the same stage gametes recovered from smaller counterparts. In summary, larger‐sized dog follicles contain a more metabolically active oocyte with a greater chance of achieving nuclear maturation in vitro. These findings demonstrate a significant role for energy metabolism in promoting dog oocyte maturation, information that will be useful for improving culture systems for rescuing intraovarian genetic material. Mol. Reprod. Dev. 79: 186–196, 2012. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
Cryopreservation of immature bovine oocytes by vitrification in straws   总被引:3,自引:0,他引:3  
The aim of this study was to cryopreserve by vitrification by ethylene glycol (EG) and dimethyl sulfoxide (DMSO) immature bovine oocytes in straws and to investigate the effects of vitrification on post-thaw oocyte maturation. A total of 575 cumulus oocyte complexes were obtained by follicle aspiration from 238 ovaries of cows slaughtered at a local abattoir. Following selection, oocytes with compacted cumulus cells and evenly granulated ooplasm were vitrified using one of the three different solutions with a non-vitrified group served as control. The first step vitrification solution contained 20% EG while the second step solution contained 40% EG+1M sucrose in a basic media used in group EG. Oocytes were matured in N-2-hidroxyethyl piperazine-N-2-ethanosulfonic acid (HEPES) buffered tissue culture medium (TCM) 199 for 24h at 39 degrees C in a humidified atmosphere of 5% CO2 in air. Oocytes were fixed following evaluation for polar body formation, stained with Giemsa solution and nuclear maturation was examined. The numbers of oocytes which were observed at Metaphase II (MII) stage were 41 (34.1%), 17 (14.9%), 29 (20.7%) and 78 (79.6%) in groups EG, DMSO, Mix and Control, respectively. Maturation rate distribution in group Mix was not statistically different when compared to maturation rate distributions in groups EG and DMSO (p>0.05). Differences between other groups were significant (p<0.001). However, better results were obtained in EG group compared to DMSO and mix groups. Maturation rates were lower in all treatment groups than the control group. The lowest maturation result was obtained in DMSO group. Maturation rate in group Mix was between maturation rates of EG and DMSO groups. Immature bovine oocytes can be vitrified in straws, but maturation success differs with the cryoprotectant and it seems that to obtain better maturation rates, new cryopreservation techniques specific for immature bovine oocytes are needed.  相似文献   

14.
The effects of osmotic stress on germinal vesicle (GV) and metaphase II (MII) stage bovine cumulus oocyte complexes (COCs) were evaluated by first exposing them to various anisotonic NaCl solutions (75, 150, 600, 1200, 2400, and 4800 +/- 5 mOsm/kg) for 10 min and then returning them to isotonic TL-Hepes solution (270 +/- 5 mOsm/kg) at 20 +/- 2 degrees C. Percentages of oocyte maturation, fertilization, polyspermy, cleavage, and blastocyst formation were measured as endpoints. Exposure to anisotonic conditions had a significant (P < 0.05) effect on the developmental competence of both GV and bovine MII COCs. Oocytes at the GV stage were more sensitive to anisotonic stress than MII oocytes (P < 0.05). None of the GV oocytes developed to the blastocyst stage after exposure to hypertonic conditions (2400 or 4800 mOsm solutions), while exposure to hypotonic conditions (75 or 150 mOsm solutions) resulted in significantly lower (P < 0.05) blastocyst formation (9% and 13%, respectively) compared to the isotonic control (25%). A dramatic decrease to 4% development to blastocyst was observed for MII oocytes following exposure to a 4800 mOsm solution. Blastocyst formation of MII oocytes which were exposed to 75, 150, 600, 1200, or 2400 mOsm solutions were similar (15%, 20%, 18%, 14%, and 13%, respectively; P > 0.05), but lower (P < 0.05) than those in the control group (29%). Exposing GV oocytes to anisotonic conditions increased polyspermic fertilization (P < 0.05), although MII oocytes were not similarly affected (P > 0.05). These data support the hypothesis that osmotic stress is detrimental to bovine oocytes and must be considered when developing optimized cryopreservation procedures for these cells. Mol. Reprod. Dev. 55:212-219, 2000.  相似文献   

15.
Experiments were conducted to assess the morphological viability and in vitro developmental potential of bovine oocytes after exposure to Ethylene Glycol‐bis(‐aminoethyl Ether) N,N,N,N‐Tetra‐acetic Acid (EGTA) prior to slow freezing. Different concentrations of EGTA (0, 1, 5 and 10 mM) and exposure intervals (5, 10 and 15 min) were tested on immature (GV) and in vitro matured (IVM) oocytes equilibrated in 1.5 mM propylene glycol (PG) without (experiment 1) or with slow freezing (experiment 2). In addition, PG and ethylene glycol (EG) were compared for cryoprotective efficacy. In vitro maturation (IVM), in vitro fertilization (IVF) and embryo culture (IVC) were performed in defined conditions. Pretreatment of both types of oocytes with 1 mM EGTA for 5 min without freezing yielded morphological and functional results comparable to those obtained for controls while results from higher concentrations of EGTA were lower (P < 0.05). Higher rates of freeze‐thaw survival and embryonic development were obtained after pretreating GV oocytes with 1 or 5 mM EGTA for 5 min. Similarly, better results were obtained when IVM oocytes were pretreated with 1 mM EGTA for either 5 or 10 min. When pretreated with 1 mM EGTA for 5 min and frozen with PG IVM oocytes exhibited higher survival rates (P < 0.05) than those frozen with EG. However, no significant differences were observed in the in vitro development of surviving GV or IVM oocytes frozen with either PG or EG. Results suggest that a prefreeze treatment with 1 mM EGTA for 5 min can enhance oocyte viability. Conditions described enabled blastocyst development of 2.9% of GV oocytes and 8.0% of IVM oocytes after cryopreservation and IVF. Mol. Reprod. Dev. 52:86–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
Growth hormone (GH) in rhesus macaque in vitro oocyte maturation (IVM) has been shown to increase cumulus expansion and development of embryos to the 9–16 cell stage in response to 100 ng/ml recombinant human GH (r‐hGH) supplementation during IVM. Although developmental endpoints for metaphase II (MII) oocytes and embryos are limited in the macaque, gene expression analysis can provide a mechanism to explore GH action on IVM. In addition, gene expression analysis may allow molecular events associated with improved cytoplasmic maturation to be detected. In this study, gene expression of specific mRNAs in MII oocytes and cumulus cells that have or have not been exposed to r‐hGH during IVM was compared. In addition, mRNA expression was compared between in vitro and in vivo‐matured metaphase II (MII) oocytes and germinal vesicle (GV)‐stage oocytes. Only 2 of 17 genes, insulin‐like growth factor 2 (IGF2) and steroidogenic acute regulator (STAR), showed increased mRNA expression in MII oocytes from the 100 ng/ml r‐hGH treatment group compared with other IVM treatment groups, implicating insulin‐like growth factor (IGF) and steroidogenesis pathways in the oocyte response to GH. The importance of IGF2 is notable, as expression of IGF1 was not detected in macaque GV‐stage or MII oocytes or cumulus cells. Mol. Reprod. Dev. 77: 353–362, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.  相似文献   

18.
In a previous study we have shown that the addition of growth hormone (GH) during in vitro maturation accelerates nuclear maturation, induces cumulus expansion, and promotes subsequent cleavage and embryonic development. The aim of this study was to investigate whether the promotory effect of GH on subsequent cleavage and blastocyst formation is due to an improved fertilization and whether this effect is caused by an improved cytoplasmic maturation of the oocyte. Therefore, bovine cumulus oocyte complexes (COCs) were cultured for 22 hours in M199 supplemented with 100 ng/ml bovine GH (NIH-GH-B18). Subsequently the COCs were fertilized in vitro. Cultures without GH served as controls. To verify whether the promoted fertilization is caused by the effect of GH on cumulus expansion or oocyte maturation, cumulus cells were removed from the oocytes after in vitro maturation (IVM) and denuded MII oocytes were selected and fertilized in vitro. Both IVM and in vitro fertilization (IVF) were performed at 39°C in a humidified atmosphere with 5% CO2 in air. At 18 hours after the onset of fertilization, the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenylindole (DAPI) staining. Oocytes with either an metaphase I (MI) or MII nuclear stage and without penetrated sperm head were considered unfertilized; oocytes with two pronuclei, zygotes, and cleaved embryos were considered normally fertilized; and oocytes with more than two pronuclei were considered polyspermic. To evaluate cytoplasmic maturation, the distribution of cortical granules 22 hours after the onset of IVM, and sperm aster formation 8 hours after the onset of fertilization were assessed. In addition, to assess the sperm-binding capacity, COCs were fertilized in vitro, and 1 hour after the onset of fertilization the number of spermatozoa bound to the oocytes was counted. The addition of GH during IVM significantly (P < 0.001) enhanced the proportion of normal fertilized oocytes. Removal of the cumulus cells prior to fertilization and selection of the MII oocytes did not eliminate the positive effect of GH on fertilization. No effect of GH on the sperm-binding capacity of the oocyte was observed. In addition, GH supplementation during IVM significantly (P < 0.001) enhanced the migration of cortical granules and sperm aster formation. It can be concluded that the promotory effect of GH on the developmental competence of the oocyte is due to a higher fertilization rate as a consequence of an improved cytoplasmic maturation. Mol. Reprod. Dev. 49:444–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Regulatory effect of GH on follicular growth and development in the cow is well documented. The aim of this study was to investigate the role of GH on in vitro bovine oocyte maturation. Therefore bovine cumulus oocyte complexes (COCs) were cultured in M199 without FCS and gonadotropins and in the presence of 10, 100, or 1,000 ng/ml bovine GH (NIH-GH-B18). The COCs were incubated at 39°C in a humidified atmosphere with 5% CO2 in air and nuclear stage was assessed after 2, 4, 8, 16, 22, and 24 hr of incubation using DAPI staining. To assess the effect of GH on developmental capacity of the oocytes, COCs were incubated in the presence of GH for 22 hr, followed by IVF and in vitro embryo culture. Cultures without GH served as controls. For subsequent development, the embryos were cultured in M199 supplemented with 10% FCS on a monolayer of BRL cells. Embryos were scored morphologically and the efficiency of the culture system was evaluated as (1) the percentage of cleaved embryos 4 days after IVF, (2) the percentage of blastocysts on day 9 expressed on the basis of the number of oocytes at the onset of culture, and (3) the percentage of hatched blastocysts on day 11 expressed on the basis of the total number of blastocysts present at day 9. GH (100 and 1,000 ng/ml) significantly accelerated nuclear maturation (P < 0.001). A 4 and 8 h the percentage of oocytes in GV stage after GH treatment (54% and 19%) was significantly lower than the control (64% and 41%). Similarly at 16 and 22 h the percentage of oocytes in MII stage was significantly higher in the GH-treated group; (58% and 77%) and (46% and 62%) for GH and control respectively. The number of oocytes in MII beyond 22 hr of culture did not differ; 100 and 1,000 ng/ml GH induced significant cumulus expansion (P < 0.05), which was not observed in the absence of GH. Addition of 100 and 1,000 ng/ml GH during maturation significantly (P < 0.01) enhanced subsequent cleavage rate from (64% and 67%) in control to (75% and 81%) in GH-treated group; embryonic development in terms of day 9 blastocyst formation was also significantly increased in the presence of GH (29% and 34%) compared to the control (18% and 24%). The hatchability of the blastocysts was not influenced by GH. From the present data, it can be concluded that GH present during IVM has a beneficial effect on subsequent development. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Studies were conducted to compare viability of immature and mature porcine oocytes vitrified in ethylene glycol (EG) using open-pulled straws (OPS). Oocytes that had been allowed to mature for 12 h (germinal vesicle group; GV) and 40 h (metaphase II group; MII) were divided into three treatments: (1) control; (2) treated with cytochalasin B and exposed to EG; and (3) treated with cytochalasin B and vitrified by stepwise exposure to EG in OPS. After warming, a sample of oocytes was fixed and evaluated by specific fluorescent probes before visualization using confocal microscopy. The remaining oocytes were fertilized and cleavage rate was recorded. Exposure of GV oocytes to EG or vitrification had a dramatic effect on spindle and chromosome configurations and no cleavage was obtained after in vitro fertilization. When MII oocytes were exposed to EG or were vitrified, 18 and 11% of oocytes, respectively, maintained the spindle structure and either EG exposure or vitrification resulted in substantial disruption in microfilament organization. The cleavage rates of mature oocytes after being exposed to EG or after vitrification were similar (14 and 13%, respectively) but were significantly less than that of control oocytes (69%). These results indicate that porcine oocytes at different meiotic stages respond differently to cryopreservation and MII porcine oocytes had better resistance to cryopreservation than GV stage oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号