首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recent studies have indicated that maternal skeletal metabolism undergoes significant changes during gestation. The agents that are responsible for eliciting these changes in bone turnover during pregnancy have yet to be defined. We therefore sought to investigate whether chaperonin 10 (Cpn10), a homolog of early-pregnancy factor, or human placental lactogen (PL) were capable of influencing the synthesis of type I collagen by human osteoblasts in vitro. Both Cpn10 and PL are major components of the maternal circulation during pregnancy, but how they might contribute to bone metabolism has not been determined. Type I collagen represents the most abundant component of bone tissue, accounting for approximately 90% of the organic compartment. Both Cpn10 and PL were capable of stimulating the synthesis of type I collagen by human osteoblasts in culture. The inclusion of 17 beta-estradiol or prolactin, however, failed to influence the ability of cells to mobilize type I collagen. These novel findings support a role for PL and Cpn10 in the metabolism of bone tissue during pregnancy. Maternal bone collagen metabolism is clearly an important event during pregnancy, and the identification of the factors responsible will aid our understanding of the regulation of skeletal metabolism during gestation.  相似文献   

4.
In this study, we investigated the effect of type I collagen on dentin matrix protein-1 (Dmp-1) and osteocalcin (OCN) gene expression of dental pulp cells. The mRNA level of Dmp-1 gene was down-regulated; however, OCN gene expression was up-regulated by the culture of dental pulp cells with type I collagen. These findings imply that type I collagen regulates mRNA level of Dmp-1 and OCN gene that are predominantly expressed in active odontoblasts. The change of gene expression by type I collagen was suppressed by the blocking of collagen-integrin interaction. We could conclude that the effect of type I collagen was mediated via binding of collagen to integrin receptors.  相似文献   

5.
Deposition of type X collagen in the cartilage extracellular matrix   总被引:1,自引:0,他引:1  
In cultured chick embryo chondrocytes, type X collagen is preferentially deposited in the extracellular matrix, the ratio between type II and type X collagen being about 5 times higher in the culture medium than in the cell layer. When the newly synthesized collagens deposited in slices from the epiphyseal cartilage of 17-day-old embryo tibiae were isolated, type X collagen was always the major species. In agreement with this result the mRNA for type X collagen was the predominant mRNA species purified from the same tissue. When the total collagen (unlabeled) deposited in the epiphyseal cartilage was analyzed, it was observed that type X collagen represented only 1/15 of the type II collagen recovered in the same preparation. The possible explanations for these differences are discussed.  相似文献   

6.
We have studied the effect of insulin-like growth factor I (IGF-I) on the formation of osteocalcin and type I collagen in isolated human osteoblasts. IGF-I at and above 0.1 nM stimulated the formation of type I collagen as measured by the type I procollagen carboxyterminal peptide (PICP), in human osteoblasts, incubated for 72 hrs in serumfree conditions. The secretion of osteocalcin was not affected by IGF-I while 1,25(OH)2 vitamin D3 significantly enhanced the formation of osteocalcin. When human osteoblast-like cells were incubated with hydrocortisone (1 M), a significant decrease in the release of both PICP and osteocalcin was seen. Addition of IGF-I to human osteoblasts also treated with hydrocortisone normalized the PICP-formation but did not affect the suppressed osteocalcin-formation. These data indicate that IGF-I reverses selective effects of hydrocortisone on bone.  相似文献   

7.
8.
Chicken histone H5 is an H1-like linker histone that is expressed only in nucleated erythrocytes. The histone H5 promoter has binding sites for Sp1 (a high affinity site) and UPE-binding protein, while the 3′ erythroid-specific enhancer has binding sites for Sp1 (one moderate and three weak affinity), GATA-1, and NF1. In this study we investigated whether trans-acting factors that bind to the chicken histone H5 promoter or enhancer are associated with adult chicken immature and mature erythrocyte nuclear matrices. We show that NF1, but not Sp1, GATA-1, or UPE-binding protein, is associated with the internal nuclear matrices of these erythroid cells. Further, we found that a subset of the NF1 family of proteins is bound to the mature erythrocyte nuclear matrix. These results suggest that in chicken erythrocytes NF1 may mediate an interaction between the histone H5 enhancer and the erythroid internal nuclear matrix. NF1 was also present in the internal nuclear matrices of chicken liver and trout liver. The observations of this study provide evidence that NF1 may have a role in a variety of cell types in targeting specific DNA sequences to the nuclear matrix. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Liquid crystalline phases of sonicated type I collagen   总被引:1,自引:0,他引:1  
The assembly properties of concentrated solutions of type I collagen molecules are compared before and after a 5-min sonication, breaking the 300-nm triple helices into short segments of about 20 nm, with a strong polydispersity. The collagen concentration of these solutions, sonicated or not, was increased up to 100 mg/ml by slow evaporation of the solvent. Whereas the non-sonicated solutions remain isotropic, the sonicated solutions transform after a few hours into a twisted liquid crystalline phase, well recognizable in polarizing microscopy. The evidence of a twisted assembly of collagen triple helices in vitro is new and relevant in a biological context since it was reported in various collagen matrices.  相似文献   

10.
11.
12.
13.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

14.
YB1 is a negative regulator in liver fibrosis. We wondered whether SJYB1, a homologous protein of YB1 from Schistosoma japonicum, has an effect on liver fibrosis in vitro. Recombinant SJYB1 (rSJYB1) protein was expressed in a bacterial system and purified by Ni‐NTA His·Bind Resin. A human hepatic stellate cell line, the LX‐2 cell line, was cultured and treated with rSJYB1. The role of rSJYB1 on LX‐2 cells was then analysed by Western blot and luciferase assay. We succeeded in expressing and purifying SJYB1 in a bacterial system and the purified rSJYB1 could be recognized by S japonicum‐infected rabbit sera. Western bolt analysis showed that rSJYB1 inhibited the expression of collagen type I, but had little effect on α‐smooth muscle actin (α‐SMA). Further analysis revealed that rSJYB1 inhibited the activity of collagen α1 (I) (COL1A1) promoter and functioned at ?1592/?1176 region of COL1A1 promoter. Our data demonstrate that rSJYB1‐mediated anti‐fibrotic activity involves inhibiting the activity of COL1A1 promoter and subsequently suppressing the expression of collagen type I in hepatic stellate cells.  相似文献   

15.
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration.  相似文献   

16.
Vibrio parahaemolyticus is a globally present marine bacterium that often leads to acute gastroenteritis. Two type III secretion systems (T3SSs), T3SS1 and T3SS2, are important for host infection. Type I collagen is a component of the extracellular matrix and is abundant in the small intestine. However, whether type I collagen serves as the cellular receptor for Vparahaemolyticus infection of host cells remains enigmatic. In this study, we discovered that type I collagen is not only important for the attachment of Vparahaemolyticus to host cells but is also involved in T3SS1‐dependent cytotoxicity. In addition, 2 virulence factors, MAM7 and VpadF enable Vparahaemolyticus to interact with type I collagen and mediate T3SS2‐dependent host cell invasion. Type I collagen, the collagen receptor α1 integrin, and its downstream factor phosphatidylinositol 3‐kinase (PI3K) are responsible for Vparahaemolyticus invasion of host cells. Further biochemical studies revealed that VpadF mainly relies on the C‐terminal region for type I collagen binding and MAM7 relies on mce domains to bind to type I collagen. As MAM7 and/or VpadF homologues are widely distributed in the genus Vibrio, we propose that Vibrios have evolved a unique strategy to infect host cells by binding to type I collagen.  相似文献   

17.
18.
Bone resorption,in vitro, is often measured as the release of prelabelled45Ca from neonatal mouse calvarial bones, or from fetal rat long bones. In this report we describe a technique to measure the breakdown of bone-matrix,in vitro. We also describe a new way to dissect neonatal mouse calvarial bones, in order to obtain large amounts of bone samples.Twelve bone fragments were dissected out from each mouse calvaria and were thereafter cultured in CMRL 1066 culture medium in serum-free conditions in 0.5 cm2 multiwell culture dishes. Matrix degradation after treatment with parathyroid hormone was assessed by measuring the amount of carboxyterminal telopeptide of type I collagen (ICTP) by RIA. The data on matrix degradation was compared to the release of prelabelled45Ca from neonatal mouse calvarial bones. We found that the dose-responses for parathyroid hormone-induced release of prelabelled45Ca and ICTP were identical.In conclusion: RIA-analysis of the ICTP-release is an easy and accurate method to measure degradation of bone-matrix,in vitro. Furthermore, the new dissection technique, described in this report, makes it easy to obtain large amounts of bone samples and thus to perform extensive experiments, e.g. dose-responses for agents that enhance bone resorption.  相似文献   

19.
Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31–37?°C (minor thermal transition, T s?~?33?°C) and 37–55?°C (major thermal transition, T m?~?40?°C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T p2?=?40?°C) had better heat resistance than the smaller one (T p1?=?33?°C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号