首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Epigenetics》2013,8(4):235-240
Genomic imprinting refers to silencing of one parental allele in the zygotes of gametes depending upon the parent of origin. Loss of imprinting (LOI) is the gain of function from the silent allele that can have a maximum effect of doubling the gene dosage. LOI may play a significant role in the etiology of intrauterine growth restriction (IUGR). Using placental tissue from 10 normal and 7 IUGR pregnancies, we conducted a systematic survey of the expression of a panel of 74 “putatively” imprinted genes using quantitative RT-PCR. We found that 52/74 (~70%) of the genes were expressed in human placentas. Nine of the 52 (17%) expressed genes were significantly differentially expressed between normal and IUGR placentas; 5 were up-regulated (PHLDA2, ILK2, NNAT, CCDC86, PEG10) and 4 down-regulated (PLAGL1, DHCR24, ZNF331, CDKAL1). We also assessed LOI profile of 14 imprinted genes in 14 normal and 24 IUGR placentas using a functional and sensitive assay developed in our laboratory. Little LOI was observed in any placentas for 5 of the genes (PEG10, PHLDA2, MEG3, EPS15, CD44). With the 149 heterozygosities examined, 40 (26.8%) exhibited LOI > 3%. Some genes exhibited frequent LOI in placentas regardless of the disease status (IGF2, TP73, MEST, SLC22A18, PEG3), while others exhibited LOI only in IUGR placentas (PLAGL1, DLK1, H19, SNRPN). Importantly, there was no correlation between gene expression and LOI profile. Our study suggests that genomic imprinting may play a role in IUGR pathogenesis, but mechanisms other than LOI may contribute to dysregulation of imprinted genes.  相似文献   

3.
Cloned animals often suffer from loss of development to term and abnormalities, typically classified under the umbrella term of Large Offspring Syndrome (LOS). Cattle are an interesting species to study because of the relatively greater success rate of nuclear transfer in this species compared with all species cloned to date. The imprinted insulin-like growth factor receptor (IGF2R; mannose-6-phosphate) gene was chosen to investigate aspects of fetal growth and development in cloned cattle in the present study. IGF2R gene expression patterns in identical genetic clones of several age groups were assessed in day 25, day 45, and day 75 fetuses as well as spontaneously aborted fetuses, calves that died shortly after birth and healthy cloned calves using single stranded conformational polymorphism gel electrophoresis. A variable pattern of IGF2R allelic expression in major organs such as the brain, cotyledon, heart, liver, lung, spleen, kidney and intercotyledon was observed using a G/A transition in the 3’UTR of IGF2R. IGF2R gene expression was also assessed by real time RT-PCR and found to be highly variable among the clone groups. Proper IGF2R gene expression is necessary for survival to term, but is most likely not a cause of early fetal lethality or an indicator of postnatal fitness. Contrary to previous reports of the transmission of imprinting patterns from somatic donor cells to cloned animals within organs in the same cloned animal the paternal allele of IGF2R can be imprinted in one tissue while the maternal allele is imprinted in another tissue. This observation has never been reported in any species in which imprinting has been studied.  相似文献   

4.
Kang HM  Park S  Kim H 《Cell proliferation》2011,44(3):254-263
Objectives: Previously, we have isolated stem cells (HEAC) from human eyelid adipose tissue and functionally differentiated them into insulin‐secreting cells. In the present study, we examined whether insulin family members might influence insulinogenic differentiation of HEAC. Materials and methods: Following culture in differentiation media containing insulin family member or not, cells were examined for gene expression, protein expression and, particularly, insulin and C‐peptide secretion, in response to high glucose challenge. Using antibodies against the specific receptor, target receptor mediating effect of the insulin family member was investigated. Results: Insulin treatment during culture had little effect on either insulin or C‐peptide secretion from HEAC, against high glucose challenge after culture. However, insulin‐like growth factor (IGF) 1 treatment decreased both secretions, and interestingly, IGF2 greatly increased the secretions. HEAC treated with IGF2 had strong expression of Pdx1, Isl1, Pax6 and PC1/3 genes, and distinct staining after insulin and C‐peptide antibodies, and dithizone. IGF2‐enhanced insulinogenic differentiation was totally blocked by antibody against insulin receptor (IR), but not by anti‐IGF1 receptor (IGF1R). Differentiated HEAC expressed both IR and IGF1R genes, whereas they expressed neither IGF2 nor IGF2R genes. Conclusions: From these results, it is suggested that IGF1 might inhibit insulinogenic differentiation of HEAC, whereas IGF2 enhances differentiation, and that enhancement of IGF2 appeared to be mediated via IR.  相似文献   

5.
Pre-eclampsia (PE) is a multisystem disorder commonly diagnosed in the latter half of pregnancy and it is a leading cause of intrauterine fetal growth retardation (IUGR). The aim of this study was to investigate the localization and the role of SPARC, secreted protein acidic, and rich in cysteine, in PE and PE–IUGR placentas in comparison with normal placentas. SPARC was mainly expressed in the villous and extravillous cytotrophoblastic cells in first trimester, whereas in PE, PE–IUGR and at term placentas, SPARC immunostaining was visible in both cytotrophoblastic cells and syncytiotrophoblast. SPARC expression significantly decreased in normal placenta from first to third trimester and a further significant reduction was demonstrated in PE and PE–IUGR. The latter downregulation of SPARC depends on hypoxic condition as shown by in vitro models. In conclusion, SPARC can play a pivotal role in PE and PE–IUGR onset and it should be considered as a key molecule for future investigations in such pathologies.  相似文献   

6.
7.
《Free radical research》2013,47(8):984-989
Abstract

Placental insulin receptor (IR) and insulin-like growth factor receptors (IGFRs) are essential for fetal growth. We investigated structural changes of these receptors exposed to increased oxidative stress in mothers diagnosed with diabetes mellitus (DM) or preeclampsia (PE) complicated with intrauterine growth restriction. Increased amount of IR and decreased amounts of IGF1R and IGF2R were found in both pathologies, accompanied by significant elevation in protein carbonyls. When isolated receptors were examined, increased carbonylation of IR and IGF1R in PE placentas was detected, whereas the amounts of carbonylated IR and IGF1R were similar in DM and healthy placentas. Carbonylation status of IGF2R did not change due to pathology, confirming the detrimental role of primary structure and conformation in oxidative susceptibility. Ligand binding was similar in all three groups of samples and did not seem to be affected by receptor oxidation. Since babies delivered by mothers with PE were smaller than the referent population, increased carbonylation of receptors might have affected downstream receptor signaling post-ligand binding.  相似文献   

8.
Lewis antigens belong to the blood group of antigens and mediate cellular adhesion through interaction with selectins. Invasive trophoblasts use an array of adhesion molecules to facilitate cell–cell and cell–extracellular matrix interactions. Here, we examined immunohistochemically the expression of Sialyl Lewis a (sLea), Sialyl Lewis x (sLex) and Lewis y (Ley) in term placentas obtained from cases of normal, intrauterine growth retardation (IUGR), preeclamptic (PE) and hemolysis, elevated liver enzymes and low platelets syndrome (HELLP) pregnancies. We report the expression of sLex in third trimester extravillous trophoblasts (EVT). sLex was significantly decreased in IUGR and moderately decreased in PE compared to normal placentas. sLex was additionally found in syncytiotrophoblast, without however any significant differences in staining intensity between normal and pathological cases. sLea was restricted to amnion epithelium. Finally, Ley was expressed in cytotrophoblasts and villous endothelial cells. Ley expression was significantly upregulated in IUGR and HELLP, whereas there was a trend toward increase in PE compared to normal placentas. The present study suggests that downregulation of sLex in EVT might be associated with IUGR and PE. Furthermore, Ley, which was recently described as a potent angiogenic factor, is upregulated in placental villi in conditions associated with placental malperfusion. U. Jeschke and A. Makrigiannakis have contributed equally.  相似文献   

9.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

10.
Insulin and insulin-like growth factor (IGF) genes are implicated in colorectal carcinogenesis. Gene-by-gene interactions that influence the insulin/IGF pathways were hypothesized as modifiers of colorectal neoplasia risk. We built a classification tree to detect interactions in 18 IGF and insulin pathway-related genes and metachronous colorectal neoplasia among 1,439 subjects pooled from two chemoprevention trials. The probability of colorectal neoplasia was greatest (71.8%) among carriers of any A allele for rs7166348 (IGF1R) and AA genotype for rs1823023 (PIK3R1). In contrast, carriers of any A at rs7166348 (IGF1R), any G for the PIK3R1 variant, and AA for rs10426094 (INSR) had the lowest probability (14.3%). Logistic regression modeling showed that any A at rs7166348 (IGF1R) with the AA genotype at rs1823023 (PIK3R1) conferred the highest odds of colorectal neoplasia (OR 3.7; 95% CI 2.2–6.5), compared with carriage of GG at rs7166348 (IGF1R). Conversely, any A at rs7166348 (IGFR1), any G allele at rs1823023 (PIK3R1), and the AA genotype at rs10426094 (INSR) conferred the lowest odds (OR 0.22; 95% CI 0.07–0.66). Stratifying the analysis by parent study and intervention arm showed highly consistent trends in direction and magnitude of associations, with preliminary evidence of genotype effects on measured IGF-1 levels in a subgroup of subjects. These results were compared to those from multifactor dimensionality reduction, which identified different single nucleotide polymorphisms in the same genes (INSR and IGF1R) as effect modifiers for colorectal neoplasia. These results support a role for genetic interactions in the insulin/IGF pathway genes in colorectal neoplasia risk.  相似文献   

11.
The regulation of the bioavailability of insulin‐like growth factors (IGFs) is critical for normal mammalian growth and development. The imprinted insulin‐like growth factor 2 receptor gene (IGF2R) encodes a transmembrane protein receptor that acts to sequester and degrade excess circulating insulin‐like growth factor 2 (IGF‐II) – a potent foetal mitogen – and is considered an important inhibitor of growth. Consequently, IGF2R may serve as a candidate gene underlying important growth‐ and body‐related quantitative traits in domestic mammalian livestock. In this study, we have quantified genotype–phenotype associations between three previously validated intronic bovine IGF2R single nucleotide polymorphisms (SNPs) (IGF2R:g.64614T>C, IGF2R:g.65037T>C and IGF2R:g.86262C>T) and a range of performance traits in 848 progeny‐tested Irish Holstein‐Friesian artificial insemination sires. Notably, all three polymorphisms analysed were associated (P ≤ 0.05) with at least one of a number of performance traits related to animal body size: angularity, body depth, chest width, rump width, and animal stature. In addition, the C‐to‐T transition at the IGF2R:g.65037T>C polymorphism was positively associated with cow carcass weight and angularity. Correction for multiple testing resulted in the retention of two genotype–phenotype associations (animal stature and rump width). None of the SNPs analysed were associated with any of the milk traits examined. Analysis of pairwise r2 measures of linkage disequilibrium between all three assayed SNPs ranged between 0.41 and 0.79, suggesting that some of the observed SNP associations with performance may be independent. To our knowledge, this is one of the first studies demonstrating associations between IGF2R polymorphisms and growth‐ and body‐related traits in cattle. These results also support the increasing body of evidence that imprinted genes harbour polymorphisms that contribute to heritable variation in phenotypic traits in domestic livestock species.  相似文献   

12.
Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.  相似文献   

13.
14.
The insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) is a member of a highly conserved protein family that is expressed specifically in placenta, testis and various cancers, but is hardly detectable in normal adult tissues. IGF2BP3 has important roles in RNA stabilization and translation, especially during early stages of both human and mouse embryogenesis. Placenta is an indispensable organ in mammalian reproduction that connects developing fetus to the uterine wall, and is responsible for nutrient uptake, waste elimination and gas exchange. Fetus development in the maternal uterine cavity depends on the specialized functional trophoblast. Whether IGF2BP3 plays a role in trophoblast differentiation during placental development has never been examined. The data obtained in this study revealed that IGF2BP3 was highly expressed in human placental villi during early pregnancy, especially in cytotrophoblast cells (CTBs) and trophoblast column, but a much lower level of IGF2BP3 was detected in the third trimester placental villi. Furthermore, the expression level of IGF2BP3 in pre-eclamptic (PE) placentas was significantly lower than the gestational age-matched normal placentas. The role of IGF2BP3 in human trophoblast differentiation was shown by in vitro cell invasion and migration assays and an ex vivo explant culture model. Our data support a role of IGF2BP3 in promoting trophoblast invasion and suggest that abnormal expression of IGF2BP3 might be associated with the etiology of PE.  相似文献   

15.
B Bhaumick  R M Bala 《Life sciences》1989,44(22):1685-1696
Autophosphorylation of insulin and insulin-like growth factor (IGF)-I receptors were measured in lectin purified receptor preparations from placentas of normal and diabetic patients. The basal and insulin or IGF-I stimulated phosphorylation of the approximately 94 kD protein, corresponding to beta-subunit of the insulin and IGF-I receptors, were approximately 2 times greater (p less than 0.05) in placentas from diabetic patients with poor glycemic control (as judged by their serum HbA1c level) compared to the normals. The magnitude of IGF-I or insulin stimulation of the phosphorylation of the 94 kD protein was comparable in placentas from both diabetic and normal patients. Immunoprecipitation and immunodepletion of IGF-I receptor by alpha-IR3, a monoclonal antibody to IGF-I receptor, revealed the increased basal phosphorylation of the approximately 94 kD protein in placentas of diabetic patients to be associated with IGF-I and insulin receptors. The magnitude of IGF-I and insulin stimulated phosphorylation of the immunoprecipitated and immunodepleted IGF-I receptor, respectively, was the same in both normal and diabetic patients. These results suggested that the increased basal phosphorylation of the 94 kD protein in placentas from diabetic patients may be intrinsic to IGF-I and insulin receptor, however, the regulatory mechanisms effecting the increase may not be dependent on IGF-I or insulin.  相似文献   

16.
Imprinted genes are epigenetically modified in a parent‐of‐origin dependent manner and as a consequence are differentially expressed, with one allele typically expressed while the other is repressed. In canine, the insulin like growth factor 2 receptor gene (IGF2R) is imprinted with predominant expression of the maternally inherited allele. Because imprinted genes usually occur in clusters, we examined the allelic expression pattern of the gene encoding the canine Mas receptor (MAS1), which is located upstream of IGF2R on canine chromosome 1 and is highly conserved in mammals. In this report we describe monoallelic expression of canine MAS1 in the neonatal umbilical cord of several individuals and we identify the expressed allele as maternally inherited. These data suggest that canine MAS1 is an imprinted gene.  相似文献   

17.
Cell surface mannose 6-phosphate/insulin-like growth factor II receptors (M6P/IGF2R) bind and target exogenous insulin-like growth factor II (IGF2) to the prelysosomes where it is degraded. Loss of heterozygosity (LOH) for M6P/IGF2R is found in cancers, with mutational inactivation of the remaining allele. We exploited the normal allele-specific differential methylation of the M6P/IGF2R intron 2 CpG island to rapidly evaluate potential LOH in ovarian cancers, since every normal individual is informative. To this end, we developed a method for bisulfite modification of genomic DNA in 96-well format that allows for rapid methylation profiling. We identified ovarian cancers with M6P/IGF2R LOH, but unexpectedly also found frequent abnormal acquisition of methylation on the paternally inherited allele at intron 2. These results demonstrate the utility of our high-throughput method of bisulfite modification for analysis of large sample numbers. They further show that the methylation status of the intron 2 CpG island may be a useful indicator of LOH and biomarker of disease.  相似文献   

18.
目的:叶酸是一种水溶性B族维生素,在体内氨基酸与核苷酸代谢中起重要作用,是胎儿生长发育所必须的营养素。本文通过建立叶酸缺乏的孕鼠模型,探讨叶酸缺乏对胎鼠宫内发育的影响,并研究胎鼠肝脏组织中胰岛素生长因子(IGF)系统的表达变化。方法:雌性C57BL/6J小鼠叶酸缺乏组6只、正常对照组6只,分别饲以不舍叶酸和含2mg叶酸/kg的纯合饲料。四周后与雄鼠交配,于怀孕第13.5天(13.5dpc)对孕鼠剖腹取胎,观察和评价胎鼠发育指标,并对宫内发育迟缓(IUGR)比率进行统计。用Real-timePCR法检测胎鼠肝脏组织中胰岛素生长因子I(IGFI)、胰岛素生长因子I受体(IGFIR)、胰岛素生长因子II(IGFII)、胰岛素生长因子II受体(IGFIIR)、胰岛素生长因子结合蛋白1(IGFBP-1)和胰岛素生长因子结合蛋白3(IGFBP-3)mRNA的相对表达水平。结果:叶酸缺乏组雌鼠合笼前每日体重增长量降低,13.5dpc胎鼠吸收胎和死胎比率升高,胎重下降,IUGR比率显著升高,差异有统计学意义(P〈0.05);叶酸缺乏组胎鼠肝脏组织中IGFII和IGFIIRmRNA的相对表达水平均低于正常对照组(P〈0.05),IGFI、IGFIR、IGFBP-1和IGFBP-3mRNA的相对表达水平两组间没有差异(P〉0.05)。结论:叶酸缺乏会导致小鼠孕中期胎鼠IUGR比率升高及胎肝IGFII和IGFIIRmRNA的表达水平降低,提示叶酸缺乏对IGF系统基因的调控,可能与胎鼠I-UGR发生机制有关。  相似文献   

19.
Purpose

We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis.

Methods

Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum.

Results

Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling.

Conclusions

Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.

  相似文献   

20.

Objective

Macrosomia is one of the most common complications in gestational diabetes mellitus. Insulin-like growth factor 2 and H19 are two of the imprinted candidate genes that are involved in fetal growth and development. Change in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 has been proved to be an early event related to the programming of metabolic profile, including macrosomia and small for gestational age in offspring. Here we hypothesize that alteration in methylation at differentially methylated region of the insulin-like growth factor 2 and H19 is associated with macrosomia induced by intrauterine hyperglycemia.

Results

The expression of insulin-like growth factor 2 is significant higher in gestational diabetes mellitus group (GDM group) compared to normal glucose tolerance group (NGT group) both in umbilical cord blood and placenta, while the expression of H19 is significant lower in GDM group in umbilical cord blood. The expression of insulin-like growth factor 2 is significant higher in normal glucose tolerance with macrosomia group (NGT-M) compared to normal glucose tolerance with normal birthweight group (NGT-NBW group) both in placenta and umbilical cord blood. A model with interaction term of gene expression of IGF2 and H19 found that IGF2 and the joint action of IGF2 and H19 in placenta showed significantly relationship with GDM/NGT and GDM-NBW/NGT-NBW. A borderline significant association was seen among IGF2 and H19 in cord blood and GDM-M/NGT-M. The methylation level at different CpG sites of insulin-like growth factor 2 and H19 in umbilical cord blood was also significantly different among groups. Based on the multivariable linear regression analysis, the methylation of the insulin-like growth factor 2 / H19 is closely related to birth weight and intrauterine hyperglycemia.

Conclusions

We confirmed the existence of alteration in DNA methylation in umbilical cord blood exposed to intrauterine hyperglycemia and reported a functional role in regulating gene associated with insulin-like growth factor 2/H19. Both of these might be the underlying pathogenesis of macrosomia. We also provided the evidence of strong associations between methylation of insulin-like growth factor 2/H19 and macrosomia induced by intrauterine hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号