首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular growth control requires the coordination and integration of multiple signaling pathways which are likely to be activated concomitantly. Mitogenic signaling initiated by thyrotropin (TSH) in thyroid cells seems to require two distinct signaling pathways, a cyclic AMP (cAMP)-dependent signaling pathway and a Ras-dependent pathway. This is a paradox, since activated cAMP-dependent protein kinase disrupts Ras-dependent signaling induced by growth factors such as epidermal growth factor and platelet-derived growth factor. This inhibition may occur by preventing Raf-1 protein kinase from binding to Ras, an event thought to be necessary for the activation of Raf-1 and the subsequent activation of the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinases (MEKs) and MAP kinase (MAPK)/ERKs. Here we report that serum-stimulated hyperphosphorylation of Raf-1 was inhibited by TSH treatment of Wistar rat thyroid cells, indicating that in this cell line, as in other cell types, increases in intracellular cAMP levels inhibit activation of downstream kinases targeted by Ras. Ras-stimulated expression of genes containing AP-1 promoter elements was similarly inhibited by TSH. On the other hand, stimulation of thyroid cells with TSH resulted in stimulation of DNA synthesis which was Ras dependent but both Raf-1 and MEK independent. We also show that Ras-stimulated DNA synthesis required the use of this kinase cascade in untreated quiescent cells but not in TSH-treated cells. These data suggest that in TSH-treated thyroid cells, Ras might be able to signal through effectors other than the well-studied cytoplasmic kinase cascade.  相似文献   

2.
Yue J  Ferrell JE 《Current biology : CB》2004,14(17):1581-1586
The ERK1/ERK2 MAP kinases (MAPKs) are transiently activated during mitosis, and MAPK activation has been implicated in the spindle assembly checkpoint and in establishing the timing of an unperturbed mitosis. The MAPK activator MEK1 is required for mitotic activation of p42 MAPK in Xenopus egg extracts; however, the identity of the kinase that activates MEK1 is unknown. Here we have partially purified a Cdc2-cyclin B-induced MEK-activating protein kinase from mitotic Xenopus egg extracts and identified it as the Mos protooncoprotein, a MAP kinase kinase kinase present at low levels in mitotic egg extracts, early embryos, and somatic cells. Immunodepletion of Mos from interphase egg extracts was found to abolish Delta90 cyclin B-Cdc2-stimulated p42 MAPK activation. In contrast, immunodepletion of Raf-1 and B-Raf, two other MEK-activating kinases present in Xenopus egg extracts, had little effect on cyclin-stimulated p42 MAPK activation. Immunodepletion of Mos also abolished the transient activation of p42 MAPK in cycling egg extracts. Taken together, these data demonstrate that Mos is responsible for the mitotic activation of the p42 MAPK pathway in Xenopus egg extracts.  相似文献   

3.
A central feature of signal transduction downstream of both receptor and oncogenic tyrosine kinases is the Ras-dependent activation of a protein kinase cascade consisting of Raf-1, Mek (MAP kinase kinase) and ERKs (MAP kinases). To study the role of tyrosine kinase activity in the activation of Raf-1, we have examined the properties of p74Raf-1 and oncogenic Src that are necessary for activation of p74Raf-1. We show that in mammalian cells activation of p74Raf-1 by oncogenic Src requires pp60Src to be myristoylated and the ability of p74Raf-1 to interact with p21Ras-GTP. The Ras/Raf interaction is required for p21Ras-GTP to bring p74Raf-1 to the plasma membrane for phosphorylation at tyrosine 340 or 341, probably by membrane-bound pp60Src. When oncogenic Src is expressed with Raf-1, p74Raf-1 is activated 5-fold; however, when co-expressed with oncogenic Ras and Src, Raf-1 is activated 25-fold and this is associated with a further 3-fold increase in tyrosine phosphorylation. Thus, p21Ras-GTP is the limiting component in bringing p74Raf-1 to the plasma membrane for tyrosine phosphorylation. Using mutants of Raf-1 at Tyr340/341, we show that in addition to tyrosine phosphorylation at these sites, there is an additional activation step resulting from p21Ras-GTP recruiting p74Raf-1 to the plasma membrane. Thus, the role of Ras in Raf-1 activation is to bring p74Raf-1 to the plasma membrane for at least two different activation steps.  相似文献   

4.
To elucidate signal transduction pathways leading to neuronal differentiation, we have investigated a conditionally immortalized cell line from rat hippocampal neurons (H19-7) that express a temperature sensitive simian virus 40 large T antigen. Treatment of H19-7 cells with the differentiating agent basic fibroblast growth factor at 39 degrees C, the nonpermissive temperature for T function, resulted in the activation of c-Raf-1, MEK, and mitogen-activated protein (MAP) kinases (ERK1 and -2). To evaluate the role of Raf-1 in neuronal cell differentiation, we stably transfected H19-7 cells with v-raf or an oncogenic human Raf-1-estrogen receptor fusion gene (deltaRaf-1:ER). deltaRaf-1:ER transfectants in the presence of estradiol for 1 to 2 days expressed a differentiation phenotype only at the nonpermissive temperature. However, extended exposure of the deltaRaf-1:ER transfectants to estradiol or stable expression of the v-raf construct yielded cells that extended processes at the permissive as well as the nonpermissive temperature, suggesting that cells expressing the large T antigen are capable of responding to the Raf differentiation signal. deltaRaf-1:ER, MEK, and MAP kinase activities in the deltaRaf-1:ER cells were elevated constitutively for up to 36 h of estradiol treatment at the permissive temperature. At the nonpermissive temperature, MEK and ERKs were activated to a significantly lesser extent, suggesting that prolonged MAP kinase activation may not be sufficient for differentiation. To test this possibility, H19-7 cells were transfected or microinjected with constitutively activated MEK. The results indicate that prolonged activation of MEK or MAP kinases (ERK1 and -2) is not sufficient for differentiation of H19-7 neuronal cells and raise the possibility that an alternative signaling pathway is required for differentiation of H19-7 cells by Raf.  相似文献   

5.
J A Frost  H Steen  P Shapiro  T Lewis  N Ahn  P E Shaw    M H Cobb 《The EMBO journal》1997,16(21):6426-6438
Mitogens promote cell growth through integrated signal transduction networks that alter cellular metabolism, gene expression and cytoskeletal organization. Many such signals are propagated through activation of MAP kinase cascades partly regulated by upstream small GTP-binding proteins. Interactions among cascades are suspected but not defined. Here we show that Rho family small G proteins such as Rac1 and Cdc42hs, which activate the JNK/SAPK pathway, cooperate with Raf-1 to activate the ERK pathway. This causes activation of ternary complex factors (TCFs), which regulate c-fos gene expression through the serum response element. Examination of ERK pathway kinases shows that neither MEK1 nor Ras will synergize with Rho-type proteins, and that only MEK1 is fully activated, indicating that MEKs are a focal point for cross-cascade regulation. Rho family proteins utilize PAKs for this effect, as expression of an active PAK1 mutant can substitute for Rho family small G proteins, and expression of an interfering PAK1 mutant blocks Rho-type protein stimulation of ERKs. PAK1 phosphorylates MEK1 on Ser298, a site important for binding of Raf-1 to MEK1 in vivo. Expression of interfering PAK1 also reduces stimulation of TCF function by serum growth factors, while expression of active PAK1 enhances EGF-stimulated MEK1 activity. This demonstrates interaction among MAP kinase pathway elements not previously recognized and suggests an explanation for the cooperative effect of Raf-1 and Rho family proteins on cellular transformation.  相似文献   

6.
The mitogen activated protein (MAP) kinase module: (Raf -->MEK-->ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.  相似文献   

7.
8.
We report a strategy for regulating the activity of a cytoplasmic signaling molecule, the protein kinase encoded by raf-1. Retroviruses encoding a gene fusion between an oncogenic form of human p74raf-1 and the hormone-binding domain of the human estrogen receptor (hrafER) were constructed. The fusion protein was nontransforming in the absence of estradiol but could be reversibly activated by the addition or removal of estradiol from the growth media. Activation of hrafER was accompanied in C7 3T3 cells by the rapid, protein synthesis-independent activation of both mitogen-activated protein (MAP) kinase kinase and p42/p44 MAP kinase and by phosphorylation of the resident p74raf-1 protein as demonstrated by decreased electrophoretic mobility. The phosphorylation of p74raf-1 had no effect on the kinase activity of the protein, indicating that mobility shift is an unreliable indicator of p74raf-1 enzymatic activity. Removal of estradiol from the growth media led to a rapid inactivation of the MAP kinase cascade. These results demonstrate that Raf-1 can activate the MAP kinase cascade in vivo, independent of other "upstream" signaling components. Parallel experiments performed with rat1a cells conditionally transformed by hrafER demonstrated activation of MAP kinase kinase in response to estradiol but no subsequent activation of p42/p44 MAP kinases or phosphorylation of p74raf-1. This result suggests that in rat1a cells, p42/p44 MAP kinase activation is not required for Raf-1-mediated oncogenic transformation. Estradiol-dependent activation of p42/p44 MAP kinases and phosphorylation of p74raf-1 was, however, observed in rat1a cells expressing hrafER when the cells were pretreated with okadaic acid. This result suggests that the level of protein phosphatase activity may play a crucial role in the regulation of the MAP kinase cascade. Our results provide the first example of a cytosolic signal transducer being harnessed by fusion to the hormone-binding domain of the estrogen receptor. This conditional system not only will aid the elucidation of the function of Raf-1 but also may be more broadly useful for the construction of conditional forms of other kinases and signaling molecules.  相似文献   

9.
Cell proliferation is regulated by an appropriate combination of intracellular signals involving activation of kinases and the generation of phospholipid metabolites. We report here that growth factors induce a biphasic generation of phosphorylcholine (PCho) in quiescent NIH 3T3 cells, resulting in an early and transient increase at 100 s and a larger and sustained increase after 3 h of stimulation. Generation of PCho at both early and late times of growth factors stimulation results from the consecutive activation of phospholipase D (PLD) and choline kinase (ChoK). Production of PCho by specific growth factors seems an essential requirement for the early signals associated to activation of Raf-1 and MAP kinases, since blockage of choline kinase completely inhibited activation of Raf-1 and MAP kinases by PDGF or FGF. Both the transient early increase and the late sustained increase in PCho are required for the induction of DNA-synthesis, besides completion of the activation of the serine/threonine kinases cascade. Thus, our results strongly suggest that generation of PCho by the PLD/choline kinase pathway is one of the critical steps in regulating cell growth in NIH 3T3 stimulated by growth factors.  相似文献   

10.
We have recently described the properties of delta Raf-1:ER, a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the human estrogen receptor. In this study, we demonstrate that activation of delta Raf-1:ER in quiescent 3T3 cells (C2 cells), while sufficient to promote morphological oncogenic transformation, was insufficient to promote the entry of cells into DNA synthesis. Indeed, activation of delta Raf-1:ER potently inhibited the mitogenic response of cells to platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) treatment. Addition of beta-estradiol to quiescent C2 cells led to rapid, sustained activation of delta Raf-1:ER and MEK but only two- to threefold activation of p42 mitogen-activating protein (MAP) kinase activity. Addition of PDGF or EGF to quiescent C2 cells in which delta Raf-1:ER was inactive led to rapid activation of Raf-1, MEK, and p42 MAP kinase activities, and entry of the cells into DNA synthesis. In contrast, when delta Raf-1:ER was activated in quiescent C2 cells prior to factor addition, there was a significant inhibition of certain aspects of the signaling response to subsequent treatment with PDGF or EGF. The expression and activation of PDGF receptors and the phosphorylation of p70S6K in response to PDGF treatment were unaffected by prior activation of delta Raf-1:ER. In contrast, PDGF-mediated activation of Raf-1 and p42 MAP kinases was significantly inhibited compared with that of controls. Interestingly, the mitogenic and signaling responses of quiescent C2 cells to stimulation with fetal bovine serum or phorbol myristate acetate were unaffected by prior activation of delta Raf-1:ER. It seems likely that at least two mechanisms contribute to the effects of delta Raf-1:ER in these cells. First, activation of delta Raf-1:ER appeared to uncouple the activation of Raf-1 from the activation of the PDGF receptor at the cell surface. This may be due to the fact that mSOS1 is constitutively phosphorylated as a consequence of the activation of delta Raf-1:ER. Second, quiescent C2 cells expressing activated delta Raf-1:ER appear to contain an inhibitor of the MAP kinase pathway that, because of its apparent sensitivity to sodium orthovanadate, may be a phosphotyrosine phosphatase. It is likely that the inhibitory effects of delta Raf-1:ER observed in these cells are a manifestation of the activation of some of the feedback inhibition pathways that normally modulate a cell's response to growth factors. 3T3 cells expressing delta Raf-1:ER will be a useful tool in unraveling the role of Raf-1 kinase activity in the regulation of such pathways.  相似文献   

11.
Raf-1 protects cells from apoptosis, independently of its signals to MEK and ERK, by translocating to the mitochondria where it binds Bcl-2 and displaces BAD. However, the answer to the question of how Raf-1 is normally lured to the mitochondria and becomes activated remains elusive. p21-activated protein kinases (Paks) are serine/threonine protein kinases that phosphorylate Raf-1 at Ser-338 and Ser-339. Here we elucidate the molecular mechanism through which Pak1 signals to BAD through a Raf-1-activated pathway. Upon phosphorylation by Pak1, Raf-1 translocates to mitochondria and phosphorylates BAD at Ser-112. Moreover, the mitochondrial translocation of Raf-1 and the interaction between Raf-1 and Bcl-2 are regulated by Raf-1 phosphorylation at Ser-338/Ser-339. Notably, we show that formation of a Raf-1-Bcl-2 complex coincides with loss of an interaction between Bcl-2 and BAD. These signals are specific for Pak1, because Src-activated Raf-1 only stimulates the MAP kinase cascade. Thus, our data identify the molecular connections of a Pak1-Raf-1-BAD pathway that is involved in cell survival signaling.  相似文献   

12.
Molecular aspects of mechanical stress-induced cardiac hypertrophy   总被引:1,自引:0,他引:1  
To elucidate the signal transduction pathway from external stimuli to nuclear gene expression in mechanical stress-induced cardiac hypertrophy, we examined the time course of activation of protein kinases such as Raf-1 kinase (Raf-1), mitogen-activated protein kinase kinase (MAPKK), MAP kinases (MAPKs) and 90-kDa ribosomal S6 kinase (p90rsk) in neonatal rat cardiomyocytes. Mechanical stretch rapidly activated Raf-1 and its maximal activation was observed at 1–2 min after stretch. The activity of MAPKK was also increased by stretch, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10–30 min after stretch, respectively. Next, the relationship between mechanical stress-induced hypertrophy and the cardiac renin-angiotensin system was investigated. When the stretch-conditioned culture medium was transferred to the culture dish of non-stretched cardiac myocytes, the medium activated MAPK activity slightly but significantly, and the activation was completely blocked by the type 1 angiotensin II receptor antagonist, CV-11974. However, activation of Raf-1 and MAPKs provoked by stretching cardiomyocytes was only partially suppressed by pretreatment with CV-11974. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1, MAPKK, MAPKs and p90rsk, and that angiotensin II, which is secreted from stretched myocytes, activates a part of these protein kinases.Abbreviations MAPK mitogen-activated protein kinase - MAPKK MAP kinase kinase - Raf-1 - Raf- 1 kinase p90rsk, 90 kDa ribosomal S6 kinase; AngII - angiotensin II - MAPKKK MAP kinase kinase kinase - rMAPK recombinant MAPKK fused to gluthathione S transferase - MMAKK recombinant MAPK fused to maltose binding protein - MBP myelin basic protein - ACE angiotensin-converting enzyme  相似文献   

13.
G protein-coupled receptors can induce cellular proliferation by stimulating the mitogen-activated protein (MAP) kinase cascade. Heterotrimeric G proteins are composed of both alpha and betagamma subunits that can signal independently to diverse intracellular signaling pathways including those that activate MAP kinases. In this study, we examined the ability of isoproterenol, an agonist of the beta(2)-adrenergic receptor (beta(2)AR), to stimulate extracellular signal-regulated kinases (ERKs). Using HEK293 cells, which express endogenous beta(2)AR, we show that isoproterenol stimulates ERKs via beta(2)AR. This action of isoproterenol requires cAMP-dependent protein kinase and is insensitive to pertussis toxin, suggesting that Galpha(s) activation of cAMP-dependent protein kinase is required. Interestingly, beta(2)AR activates both the small G proteins Rap1 and Ras, but only Rap1 is capable of coupling to Raf isoforms. beta(2)AR inhibits the Ras-dependent activation of both Raf isoforms Raf-1 and B-Raf, whereas Rap1 activation by isoproterenol recruits and activates B-Raf. beta(2)AR activation of ERKs is not blocked by expression of RasN17, an interfering mutant of Ras, but is blocked by expression of either RapN17 or Rap1GAP1, both of which interfere with Rap1 signaling. We propose that isoproterenol can activate ERKs via Rap1 and B-Raf in these cells.  相似文献   

14.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

15.
Stimulation of mitogen-activated protein kinases (MAPKs) or extracellular signal regulated protein kinases (ERKs) after exposure of mammalian cells to ultraviolet (UV) and X-irradiation occurs through activation of receptor tyrosine kinases via Ras/Raf/Mek/ERKs cascade. This activation of MAPKs is proposed to play a role in the replacement of damaged proteins during these stresses. Heat shock also activates MAPKs; however, the signaling cascade and the biochemical and physiological links between activation by heat and downstream effects are unknown. In this report we demonstrate that, unlike irradiation, heat induces MAPKs through ceramide metabolism to sphingosine with stimulation of Raf-1 protein kinase. The activation of MAPKs by heat does not occur in all cell types, because the step(s) downstream of ceramide to activation of Raf-1 protein kinase is missing in myeloid leukemic cells such as HL-60, U937, and K562, while it is present in NIH3T3 fibroblasts. Heat-induced MAPK activation may enhance the ability of cells to survive a severe heat shock. Blocking 60-70% of the activity of MAPK (ERK1) by stable overexpression of the dominant negative allele ERK1-KR renders NIH3T3 and K562 cells up to 100-fold more sensitive to cytotoxic effects of heat. Conversely, NIH3T3 and K562 cells stably overexpressing the wild-type ERK1 develop resistance to killing by heat. These results suggest that increased thermal sensitivity of leukemic cells to thermal stress or other cancer therapy regimens could be attributable to lack of pertinent activation of the MAPK pathway by such stresses.  相似文献   

16.
Activation of the ERK mitogen-activated protein (MAP) kinase pathway has been implicated in the regulation of cell growth, differentiation and senescence. In this pathway, the MAP kinases ERK1/ERK2 are phosphorylated and activated by the dual-specificity kinases MEK1 and MEK2, which in turn are activated by serine phosphorylation by a number of MAP kinase kinase kinases. We report here the chromosomal localization of the human genes encoding the MAP kinase kinase isoforms MEK1 and MEK2. Using a combination of fluorescence in situ hybridization, somatic cell hybrid analysis, DNA sequencing and yeast artificial chromosome (YAC) clone analysis, we have mapped the MEK1 gene (MAP2K1) to chromosome 15q21. We also present evidence for the presence of a MEK1 pseudogene on chromosome 8p21. The MEK2 gene (MAP2K2) was mapped to chromosome 7q32 by fluorescence in situ hybridization and YAC clone analysis.  相似文献   

17.
ERK pathway positively regulates the expression of Sprouty genes   总被引:6,自引:0,他引:6  
Sprouty was originally identified as an inhibitor of Drosophila development-associated receptor tyrosine kinase (RTK) signaling. Although RTK signaling has been shown to induce Sprouty gene expression, the precise induction pathway downstream of RTK remains unclear. As RTK signaling pathway includes activation of extracellular signal-regulated kinases (ERKs), we have examined a correlation between activation of ERKs and induction of Sprouty gene expression. All reagents which induce the activation of ERKs induce Sprouty gene expression; these agents include not only growth factors which bind to RTK but also phorbol 12-myristate-13-acetate and active Raf-1 kinase. Furthermore, the Sprouty gene expression induced by all those agents is totally suppressed when the cells are pretreated with specific inhibitors of ERK kinase (MEK). Human tumor cells which exhibit constitutive activation of ERKs show elevated expression of Sprouty genes, which is abolished by treatment of these cells with MEK inhibitors. All these findings clearly indicate that Sprouty gene expression is positively regulated by the ERK pathway downstream of RTK.  相似文献   

18.
The protein kinase domains of mouse A-Raf and B-Raf were expressed as fusion proteins with the hormone binding domain of the human estrogen receptor in mammalian cells. In the absence of estradiol, 3T3 and rat1a cells expressing delta A-Raf:ER and delta B-Raf:ER were nontransformed, but upon the addition of estradiol the cells became oncogenically transformed. Morphological oncogenic transformation was more rapid and distinctive in cells expressing delta B-Raf:ER compared with cells expressing delta A-Raf:ER. Biochemical analysis of cells transformed by delta A-Raf:ER and delta B-Raf:ER revealed several interesting differences. The activation of delta B-Raf:ER consistently led to the rapid and robust activation of both MEK and p42/p44 MAP kinases. By contrast, the activation of delta A-Raf:ER led to a weak activation of MEK and the p42/p44 MAP kinases. The extent of activation of MEK in cells correlated with the ability of the different Raf kinases to phosphorylate and activate MEK1 in vitro. delta B-Raf:ER phosphorylated MEK1 approximately 10 times more efficiently than delta Raf-1:ER and at least 500 times more efficiently than delta A-Raf:ER under the conditions of the immune-complex kinase assays. These results were confirmed with epitope-tagged versions of the Raf kinase domains expressed in insect cells. The activation of all three delta Raf:ER proteins in 3T3 cells led to the hyperphosphorylation of the resident p74raf-1 and mSOS1 proteins, suggesting the possibility of "cross-talk" between the different Raf kinases and feedback regulation of intracellular signaling pathways. The activation of either delta B-Raf:ER or delta Raf-1:ER in quiescent 3T3 cells was insufficient to promote the entry of the cells into DNA synthesis. By contrast, the activation of delta A-Raf:ER in quiescent 3T3 cells was sufficient to promote the entry of the cells into S phase after prolonged exposure to beta-estradiol. The delta Raf:ER system has allowed us to reveal significant differences between the biological and biochemical properties of oncogenic forms of the Raf family of protein kinases. We anticipate that cells expressing these proteins and other estradiol-regulated protein kinases will be useful tools in future attempts to unravel the complex web of interactions involved in intracellular signal transduction pathways.  相似文献   

19.
Extracellular signal-regulated kinase (ERK) activation pathways have been well characterized in a number of cell types but very few data are available for platelets. The thrombin-induced signaling pathway leading to ERK2 activation in platelets is largely uncharacterized. In this study, we investigated the kinases involved in thrombin-induced ERK2 activation in conditions of maximal ERK2 activation. We found that thrombin-induced mitogen-activated protein kinase/ERK kinase (MEK)1/2 activation was necessary for ERK2 phosphorylation. We obtained strong evidence that conventional protein kinase Cs (PKCs) and calcium are involved in thrombin-induced ERK2 activation. First, ERK2 and MEK1/2 phosphorylation was totally inhibited by low concentrations (1 microM) of RO318425, a specific inhibitor of conventional PKCs. Second, Ca(2+), from either intracellular pools or the extracellular medium, was necessary for ERK2 activation and conventional PKC activation, excluding the involvement of a new class of calcium-insensitive PKCs. Third, LY294002 and wortmannin had no significant effect on ERK2 activation, even at concentrations that inhibit phosphatidylinositol (PI)3-kinase (5 microM to 25 microM and 50 nM, respectively). This suggests that PI3-kinase was not necessary for ERK2 activation and therefore, that PI3-kinase-dependent atypical PKCs were not involved. Surprisingly, in contrast to proliferative cells, we found that the serine/threonine kinases Raf-1 and B-Raf were not an intermediate kinase between conventional PKCs and MEK1/2. After immunoprecipitation of Raf-1 and B-Raf, the basal glutathione S-transferase-MEK1 phosphorylation observed in resting platelets was not upregulated by thrombin and was still observed in the absence of anti-Raf-1 or anti-B-Raf antibodies. In these conditions, the in vitro cascade kinase assay did not detect any MEK activity. Thus in platelets, thrombin-induced ERK2 activation is activated by conventional PKCs independently of Raf-1 and B-Raf activation.  相似文献   

20.
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein–protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号