首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was shown earlier that some neurons in Helix CNS express the mRNA of the precursor of neuropeptide GFAD. Using the data obtained with the help of the whole-mount in situ hybridization, we tried to identify a group of such neurons, namely, the pedal caudo-ventral group and to determine their possible functions. The local extracellular stimulation of the pedal caudo-ventral group resulted in movements of reproductive organs in the semi-intact preparation and suppressed the activity of the modulatory neurons controlling feeding and defensive behavior. Application of synthetic peptide GFAD (10(-8) mol/l) also activated movements of the reproductive organs and suppressed the activity of the modulatory neuron controlling feeding behavior. Stimulation of the labial nerves resulted in suppression of caudo-ventral neurons with simultaneous activation of the modulatory neuron controlling feeding behavior. The obtained evidence suggests that the caudo-ventral neurons can regulate movements of the reproductive organs and also coordinate different functions in realization of the integral sexual behavior. This group of neurons inhibits the modulatory neurons controlling the forms of behavior incompatible with courtship, i.e., feeding and defensive forms.  相似文献   

2.
Helix Command Specific 2 (HCS2) gene is constantly expressed in parietal premotor (command) interneurons involved in control of the terrestrial snail Helix lucorum withdrawal behavior as a trigger element. It is also expressed under noxious conditions in other neurons presumably involved in withdrawal behavior. In this study we addressed the role of neuropeptide CNP4, encoded by gene HCS2, in the regulation of activity of the respiratory system, and in the influence on growth of isolated neurons in culture. It was shown that activity of the premotor interneuron elicits a direct effect (pneumostome closure), and a delayed intensification of respiratory movements. Application of CNP4 mimicked the delayed effects. Presence of the peptide CNP4 in solution for cultured neurons led to increase of neuronal growth. Immunochemical localization of the protein precursor encoded by gene HCS2 and peptide CNP4 in the cultured premotor interneurons revealed their preferential presence in the growth cones. The obtained results suggest that CNP4 may be secreted and involved in synergic regulation of behavior of a snail.  相似文献   

3.
Peptide hormones synthesized by secretory neurons in the CNS are important regulators of physiology, behavior, and development. Like other neuropeptides, they are synthesized from larger precursor molecules by a specific set of enzymes. Using a combination of neurogenetics, immunostainings, and direct mass spectrometric profiling, we show that the presence of Drosophila prohormone convertase 2 encoded by the gene amontillado (amon) is a prerequisite for the proper processing of neuropeptide hormones from the major neurohemal organs of the CNS. A loss of amon correlates with a loss of neuropeptide hormone signals from the larval ring gland and perisympathetic organs. Neuropeptide hormone signals were still detectable in the adult corpora cardiaca of older amon-deficient flies which were amon heat-shock-rescued until eclosion. A semiquantification by direct peptide profiling using stable isotopic standards showed, however, that their neuropeptide hormone levels are strongly reduced. Targeted expression of GFP under the control of amon regulatory regions revealed a co-localization with the investigated peptide hormones in secretory neurons of the brain and ventral nerve cord. The lack of AMON activity resulted in a deficiency of L3 larva to enter the wandering phase. In conclusion, our findings provide the first direct evidence that AMON is a key enzyme in the production of neuropeptides in the fruitfly.  相似文献   

4.
SUMMARY 1. The HCS2 (Helix command specific 2) gene expressed in giant command neurons for withdrawal behavior of the terrestrial snail Helix lucorum encodes a unique hybrid precursor protein that contains a Ca-binding (EF-hand motif) protein and four small peptides (CNP1-CNP4) with similar Tyr-Pro-Arg-X aminoacid sequence at the C terminus. Previous studies suggest that under conditions of increased intracellular Ca2+ concentration the HCS2 peptide precursor may be cleaved, and small physiologically active peptides transported to the release sites. In the present paper, intracellular localization of putative peptide products of the HCS2-encoded precursor was studied immunocytochemically by means of light and electron microscopy.2. Polyclonal antibodies against the CNP3 neuropeptide and a Ca-binding domain of the precursor protein were used for gold labeling of ultrathin sections of identified isolated neurons maintained in culture for several days, and in same identified neurons freshly isolated from the central nervous system.3. In freshly isolated neurons, the gold particles were mainly localized over the cytoplasmic secretory granules, with the density of labeling for the CNP3 neuropeptide being two-fold higher than for the calcium-binding domain. In cultured neurons, both antibodies mostly labeled clusters of secretory granules in growth cones and neurites of the neuron. The density of labeling for cultured neurons was the same for both antibodies, and was two-fold higher than for the freshly isolated from the central nervous system neurons.4. The immunogold particles were practically absent in the bodies of cultured neurons.5. The data obtained conform to the suggestion that the HCS2 gene products are transported from the cell body to the regions of growth or release sites.  相似文献   

5.
In the simultaneous hermaphrodite snail Lymnaea stagnalis, copulation as a male is controlled by neurons that send axons to the male copulatory organs via a single penis nerve. Using direct mass spectrometry of a penis nerve sample, we show that one of the molecular ions has a mass corresponding to GAPRFVamide, previously identified from the buccal ganglia, and named Lymnaea inhibitory peptide (LIP). The identity of this peptide is confirmed by partial peptide purification from the penis nerve, followed by post source decay mass spectrometry. We cloned the LIP-encoding cDNA, which predicts a prohormone that gives rise to five copies of LIP (now re-named LIP A), two other -FVamide peptides (LIPs B and C), and five structurally unrelated peptides. The LIP gene is expressed in neurons of the right cerebral ventral lobe that send their axons into the penis nerve. We show that the LIP A peptide is present in these neurons and in the penis nerve, and confirmed the presence of LIP B and C in the penis nerve by post source decay mass spectrometry. Finally, we demonstrate that LIP A, B and C inhibit the contractions of the penis retractor muscle, thereby implicating their role in male copulation behavior.  相似文献   

6.
7.
We have recently isolated a myoactive peptide, called leech excitatory peptide, belonging to the GGNG peptide family from two species of leeches, Hirudo nipponia and Whitmania pigra. Immunohistochemistry and in situ hybridization were employed to localize leech excitatory peptide-like peptide(s) and its gene expression in the central nervous system of W. pigra. A pair of neuronal somata were stained by both immunohistochemistry and in situ hybridization in the supraesophageal, subesophageal, and segmental ganglia. In addition, several other neurons showed positive signals by either immunohistochemistry or in situ hybridization in these ganglia. An immunoreactive fiber was observed to run in the anterior root of segmental ganglion 6, which is known to send axons to the sexual organs, though we failed to detect immunoreactivity in possible target tissues. Antiserum specificity was established by enzyme-linked immunosorbent assay using different leech excitatory peptide-related peptides. Leech excitatory peptide elicited muscular contraction of isolated preparations of penis and intestine at concentrations of 10(-8 )M. These results suggest that leech excitatory peptide is a neuropeptide modulating neuromuscular transmission in multiple systems, including regulation of reproductive behavior.  相似文献   

8.
The distribution and function of an Aplysia cardioexcitatory peptide, NdWFamide, were examined in the nervous system of pulmonate snails. We chemically identified the authentic NdWFamide from a land snail (Euhadra congenita) and a freshwater snail (Lymnaea stagnalis). NdWFamide potentiated the heartbeat of those snails. Immunohistochemistry using anti-NdWFamide antibody demonstrated the distribution of NdWFamide-containing neurons and fibers in the central nervous system, as well as peripheral tissues, such as the cardiovascular region and accessory sex organs. These results suggest that NdWFamide is a neuropeptide mediating the neural regulation of the activity of the cardiovascular and reproductive systems of snails.  相似文献   

9.
Evidence is presented indicating that the mesocerebrum of the terrestrial snail, Helix aspersa, has a major role in the control of sexual behavior. Morphological and physiological results demonstrate a right-sided bias in the mesocerebrum that is consistent with the fact that sexual behavior is executed almost entirely on the animal's right side. Thus, the right lobe has 23% more neurons than the left lobe, and they are 24% larger. Excitatory synaptic inputs derive predominately from neurons on the right side. The axons of right-side mesocerebral neurons go to the right pedal ganglion almost without exception, and even the axons of left-side neurons travel mostly in right-side connective nerves. Direct evidence for a role of the mesocerebrum in commanding sexual behavior comes from experiments with electrical stimulation. Extracellular stimulation of the right mesocerebrum, but not the left mesocerebrum, resulted in movements of the "love dart" sac and the penis. Intracellular stimulation of neurons in the right mesocerebrum evoked measurable movements of either the dart sac or the penis, or both, in 17% of the cells tested. The latencies ranged between 5 and 50 s. In an intact animal, these movements would cause a release of the dart and an eversion of the penis. The motor effects were mediated through the right cerebropedal connective and the pedal nerve NCPD, with the motorneurons probably situated in the right pedal ganglion.  相似文献   

10.
Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan.  相似文献   

11.
Previous work has shown that a transgene consisting of a fusion between the rat atrial natriuretic peptide and a green fluorescent protein reporter (ANF‐gfp) is processed, localized, and released, as would be an endogenous neuropeptide when it is expressed in the nervous system of Drosophila melanogaster using the GAL4/UAS expression system. Here we have tested the utility of this targetable transgene for detecting neuropeptide release following the execution of a peptide‐controlled behavior. For the behavior we used ecdysis, the behavior expressed by insects to shed their old cuticle at the end of the molt. We found that larval ecdysis was accompanied by a readily detectable reduction in gfp fluorescence from relevant secretory cells in the periphery and peptidergic neurons in the CNS. We also found that expression of the ANF‐gfp products did not have detrimental effects on larval ecdysis or adult circadian rhythmicity, when the transgene was expressed in peptidergic cells that are known to control these behaviors. Finally, we used a broadly expressed GAL4 driver to show that the UAS‐ANF‐gfp transgene could be used to identify axons that show a reduction in gfp fluorescence following the expression of ecdysis behavior. These findings, coupled with the availability of an increasing number of strains bearing different GAL4 drivers, suggest that this transgene will be a useful tool for identifying peptidergic neurons and secretory cells (and, eventually, their secretory product) that release their peptide content during the occurrence, in the intact animal, of a developmental, physiological or behavioral process of interest. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 181–191, 2004  相似文献   

12.
13.
Abstract: Male copulatory behavior in the snail Lymnaea stagnalis is controlled by several types of peptidergic neurons, including a cluster of neurons in the ventral lobe of the right cerebral ganglion that show immunoreactivity to myomodulin-A of Aplysia and innervate the penis complex. We identified structurally myomodulin-A and three related peptides from Lymnaea and showed that they are present in a characteristic ratio in both the penis nerve and penis complex, suggesting that they are processed from a single precursor and transported from the ventral lobe to the penis complex. All four peptides decreased the relaxation time of electrically evoked contractions of the penis retractor muscle. However, their effects on the amplitude of contraction were different, ranging from no effect to an increase or a decrease in the amplitude. A mixture of the peptides in a ratio as determined by direct mass spectrometry of the penis nerve decreased the contraction time, the relaxation time, and the amplitude. These effects resemble those of one particular peptide in the mixture. The direct mass spectrometry determinations of the peptide profile in the penis nerve suggest that many more, as yet unidentified, neuropeptides are involved in modulation of muscle activities of the penis complex.  相似文献   

14.
Fujisawa Y  Masuda K  Minakata H 《Peptides》2000,21(8):1203-1208
Fulicin is a D-amino acid-containing neuropeptide that has been thought to control male copulatory behavior in the land snail, Achatina fulica. In the present study, we demonstrated that the vagina and the oviduct of Achatina were densely innervated by fulicin-like immunoreactive neuronal fibers. We confirmed that fulicin was actually present in the vagina by mass spectrometry. Furthermore, fulicin showed a profound excitatory effect on contractions of the vagina and the oviduct. These results suggest that fulicin controls female egg-laying behavior as an excitatory neuropeptide regulating the female reproductive organs of the snail.  相似文献   

15.
In Drosophila, the gustatory receptor (Gr) gene family contains 60 family members that encode 68 proteins through alternative splicing. Some gustatory receptors (Grs) are involved in the sensing of sugars, bitter substrates, CO2, pheromones, and light. Here, we systematically examined the expression of all 68 Grs in abdominal neurons which project to the abdominal ganglion of the central nervous system using the GAL4/UAS system. Gr gene expression patterns have been successfully analyzed in previous studies by using the GAL4/UAS system to drive reporter gene expression. Interestingly, 21 Gr-GAL4 drivers showed abdominal ganglion projection, and 18 of these 21 Gr-GAL4 drivers labeled multidendritic neurons of the abdominal wall. 4 drivers also labeled neuronal processes innervating the reproductive organs. The peripheral expression of Gr-GAL4 drivers in abdominal multidendritic neurons or neurons innervating the reproductive organs suggests that these Grs have atypical sensory functions in these organs not limited to conventional taste sensing.  相似文献   

16.
Sha K  Conner WC  Choi DY  Park JH 《Gene》2012,497(2):191-199
In this article, we characterized structure and expression of genes encoding the neuropeptide Corazonin (MdCrz) and its putative receptor (MdCrzR) in the House Fly, Musca domestica. The MdCrz gene contains two introns, one within the 5' untranslated region and the other within the open reading frame. The 150-amino-acid precursor consists of an N-terminal signal peptide, and mature Crz followed by Crz-associated peptide (CAP). The CAP region is highly diverged from those of other insect precursors, whereas the mature Crz is identical in other dipteran members. In situ hybridization and immunohistochemistry consistently found a group of three MdCrz-producing neurons in the dorso-lateral protocerebrum, and eight pairs of bi-lateral neurons in the ventral nerve cord in the larvae. In adults, the expression was found exclusively in a cluster of five to seven neurons per brain lobe. Comparable expression patterns observed in other dipteran species suggest conserved regulatory mechanisms of Crz expression and functions during the course of evolution. MdCrzR deduced from the full-length cDNA sequence is a 655-amino acid polypeptide that contains seven trans-membrane (TM) domains and other motifs that are characteristics of Class-A G-protein coupled receptors. Although the TMs and loops between the TMs are conserved in other CrzRs, N-terminal extracellular domain is quite dissimilar. Tissue-specific RT-PCR revealed a high level of MdCrzR expression in the larval salivary glands and a moderate level in the CNS. In adults, the receptor was expressed both in the head and body, suggesting multifunctionality of the Crz signaling system.  相似文献   

17.
18.
19.
Here we report on the molecular characterization of the first molluscan NOS in the CNS of the pond snail Lymnaea stagnalis. This Lymnaea NOS (Lym-nNOS) which is expressed preferentially in the CNS is most similar to mammalian neuronal NOS but contains tandem repeats of a seven amino acid motif not found in any other known NOS. We have localized Lym-nNOS to the serotonergic cerebral giant cells (CGCs) which modulate synaptic transmission within a neural network that generates feeding behavior. Our results suggest that the CGCs employ both NO and serotonin in the modulation of the central neural network underlying feeding. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 65–76, 1998  相似文献   

20.
Numerous green-fluorescent neurons have been revealed by means of the glyoxylic acid histochemical method in cryostat sections of several organs of two Adriatic aplysiid gastropods, Aplysia depilans and A. fasciata. Catecholamine-containing perikarya and their processes have been found to be especially abundant in the vaginal portion of the large hermaphrodite duct, in the penis and its sheath, and in the gill. In the reproductive organs, two subpopulations of catecholamine-containing neurons could be distinguished according to their size and location. Axons of larger neurons formed bundles which seemed to project at the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号