首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uspenskaia ZI  Iudin AL 《Tsitologiia》2001,43(6):cleavage
RNP particles containing 20S prosomes (alpha RNP) isolated from human epidermoid carcinoma cell line A-431 are shown to posses strong and regulated endonuclease activity specific for high-molecular-weight RNA, particularly, specific mRNAs. Furthermore, alpha-RNP destabilize the 3'-untranslated regions of c-myc mRNA, creating a specific cleavage pattern. Cleavage point within Alu sequence in high-molecular-weight RNA has been localized by primer-extension method. This RNase activity is induced under the action of EGF. alpha-RNP involvement in the coordinated control of processing and stability of specific messenger RNA molecules is suggested. The endoribonuclease activity of alpha-RNP can represent a link between EGF signalling pathway and RNA processing and degradation.  相似文献   

2.
The small nuclear RNP (alpha-RNP) tightly bound to chromatin has been isolated. alpha-RNP can be removed from chromatin together with the acid-soluble proteins. The RNA from this RNP has been isolated; its electrophoretic mobility is equal to that of 4 S RNA. The study of the resistance of alpha-RNA to RNases (A, T1 and S1) in salt solutions of various ionic strengths allows us to conclude that the alpha-RNA has a well-developed secondary structure. The alpha-RNA is tightly associated with the protein moiety of alpha-RNP and has developed secondary structure. The alpha-RNA is tightly associated with the protein moiety of alpha-RNP and has a high metabolic activity.  相似文献   

3.
It has been shown that endoribonuclease activity of alpha-RNP particles and 26S proteasomes are changed under the action of inductors of programmed cell death. Treatment of K562 cells with inductors of apoptosis--doxorubicin (adriamycin) and diethylmaleate--lead to a significant stimulation of RNAse activity of alpha-RNP and to reduction of proteasome RNase activity. The enzymatic activity under study has been shown to be specifically and selectively dependent on phosphorylation of subunits of alpha-RNP particles and 26S proteasomes. The characteristics of RNAse activity of different subpopulations of proteasomes differ. The specificity of a subpopulation of proteasomes exported from the cell has been demonstrated. Proteasome and alpha-RNP involvement in the coordinated control of stability of various specific messenger RNA molecules is suggested, and one of the mechanisms of this control might be the export of specific subpopulation of proteasomes from the cell.  相似文献   

4.
Here we demonstrate that the epidermal growth factor (EGF) induces association of prosomes (20S-proteasomes) with its receptor in A-431 cells. Additionally, ligand-dependent association of ribonucleoprotein particles (alpha-RNP), containing small ALU-like RNA, with the EGF receptor was demonstrated. A suggestion has been put forward on the involvement of prosomes and alpha-RNP in the EGF signal transmission to different stages of gene expression.  相似文献   

5.
In eukaryotic cells the population of proteasomes is heterogeneous. Here we have shown that proteasomes from nuclei and cytoplasm of rat liver cells differ in their subunit patterns. The subunit pattern of alpha-RNP differs from that of proteasomes, however, alpha-RNP particles contain the number of 26S proteasome subunits. Moreover, the proteasomes contain subunits of alpha-RNP. We have shown for the first time that nuclear proteasomes and alpha-RNP are hyperphosphorylated on threonine residues. Differences in phosphorylation state of subunits of nuclear and cytoplasmic proteasomes and alpha-RNP on threonine and tyrosine residues have been revealed. A suggestion is put forward that hyperphosphorylation of subunits may determine nuclear localization of these complexes in rat liver cells. The results obtained suggest that a highly specialized system of protein kinases and phosphatases may be involved in the regulation of phosphorylation state of different populations of proteasomes and alpha-RNP in rat liver cells.  相似文献   

6.
An Alu-DNA repeat-binding protein with a molecular mass of 68 kDa (p68) is identified in the somatic human cell nucleoplasm. Gel mobility shift assay (GMSA), South-western blotting and affinity purification on DNA attached to the carrier were used in the identification. GMSA revealed multiple complexes with the exponential dependence of their relative mobility. A narrow binding site of the p68 was revealed using synthetic oligonucleotides. It is located between the A-box and B-box of the RNA polymerase III promoter and is identical to that reported for the Alu-binding protein from human spermatozoids. The same narrow binding site, the similarity of the isolation procedure from germ and somatic cells, and similar binding properties and molecular masses suggest homology of the two proteins. Antibodies raised against Alu-protein complexes led to hypershift of the complexes in GMSA and stained p68 in active fractions in human spermatozoids and in Alu-RNA-containing alpha-RNP particles. Immunofluorescence of a HeLa cell monolayer revealed an intranuclear dot pattern with the dots corresponding to euchromatin areas and some dots located at the cell periphery in the cytoplasm. alpha-RNP particles bound Alu-DNA in vitro and contained p68 as shown using the immunogold procedure. Alu-DNA binding activity was revealed in cytoplasm as well as in nucleoplasm. The possible nature of the main Alu-DNA binding protein and its involvement in the particle structure are discussed.  相似文献   

7.
The present work demonstrates the ability of 20S proteasome-containing, tightly bound to chromatin RNP-particles (alpha-RNP) to endonucleolyse specific messenger RNAs (in particular, human mRNA for p53 gene and mRNA for luciferase from Renilla sp.). The dependence of individual mRNA endonucleolysis by alpha-RNP particles on both the substrate and enzyme was found.  相似文献   

8.
The buoyant density in the CsCl gradient of the small nuclear RNP tightly bound to chromatin has been studied. It was shown that the buoyant density of alpha-RNP is characteristic for ribonucleoproteins (p = 1.36-1.50 g/cm3). The alpha-particles are of extraordinary stability. These RNP were shown to remain stable under drastic conditions (high ionic strength, SDS, 6 M urea) and resist unfixed caesium chloride density centrifugation. The alpha-RNA hybridizes with total rat liver DNA at C0t1/2 = 10(3). The oligonucleotide analysis of the alpha-RNA shows that the alpha-RNA is heterogeneous.  相似文献   

9.
10.
Giardia lamblia, a parasitic protozoan, can contain a double-stranded RNA (dsRNA) virus, GLV (1). We have identified an RNA polymerase activity present specifically in cultures of GLV infected cells. This RNA polymerase activity is present in crude whole cell lysates as well as in lysates from GLV particles purified from the culture medium. The RNA polymerase has many characteristics common to other RNA polymerases (e.g. it requires divalent cations and all four ribonucleoside triphosphates), yet it is not inhibited by RNA polymerase inhibitors such as alpha-amanitin or rifampicin. The RNA polymerase activity synthesizes RNAs corresponding to one strand of the GLV genome, although under the present experimental conditions, the RNA products of the reaction are not full length viral RNAs. The in vitro products of the RNA polymerase reaction co-sediment through sucrose gradients with viral particles; and purified GLV viral particles have RNA polymerase activity. The RNA polymerase activities within and outside of infected cells closely parallel the amount of virus present during the course of viral infection. The similarities between the RNA polymerase of GLV and the polymerase associated with the dsRNA virus system of yeast are discussed.  相似文献   

11.
To identify proteins that are involved in RNA degradation and processing in Halobacterium sp. NRC-1, we purified proteins with RNA-degrading activity by classical biochemical techniques. One of these proteins showed strong homology to the eukaryotic initiation factor 5A (eIF-5A) and was accordingly named archaeal initiation factor 5A (aIF-5A). Eukaryotic IF-5A is known to be involved in mRNA turnover and to bind RNA. Hypusination of eIF-5A is required for sequence-specific binding of RNA. This unique post-translational modification is restricted to Eukarya and Archaea. The exact function of eIF-5A in RNA turnover remained obscure. Here we show for the first time that aIF-5A from Halobacterium sp. NRC-1 exhibits RNA cleavage activity, preferentially cleaving adjacent to A nucleotides. Detectable RNA binding could be shown for aIF-5A purified from Halobacterium sp. NRC-1 but not from Escherichia coli, while both proteins possess RNA cleavage activity, indicating that hypusination of aIF-5A is required for RNA binding but not for its RNA cleavage activity. Furthermore, we show that the hypusinated form of eIF-5A also shows RNase activity while the unmodified protein does not. Charged amino acids in the N-terminal domain of aIF-5A as well as in the C-terminal domain, which is highly similar to the cold shock protein A (CspA), an RNA chaperone of E. coli, are important for RNA cleavage activity. Moreover our results reveal that activity of aIF-5A depends on its oligomeric state.  相似文献   

12.
We have investigated the effects of thyroidectomy, hypophysectomy and 3,3',5-tri-iodothyronine replacement on protein synthesis and degradation in skeletal muscle in vivo. Thyroidectomy resulted in a decrease in the rate of protein synthesis as a result of a loss of RNA. However, RNA activity, the rate of protein synthesis per unit of RNA, was not decreased. This was the case in both young growing rats and mature nongrowing rats. Tri-iodothyronine treatment of thyroidectomized rats increased protein synthesis by increasing RNA concentration without changes in RNA activity, and this occurred even when food intake was restricted to prevent any increase in growth. The rate of protein degradation was decreased by thyroidectomy and increased by tri-iodo-thyronine replacement in both animals fed ad libitum and food-restricted animals. Hypophysectomy decreased protein synthesis by decreasing both RNA concentration and activity. these changes were reversed by tri-iodothyronine treatment even in the presence of persistent marked hypoinsulinaemia. This indicates that tri-iodothyronine can activate athe translational phase of protein synthesis in muscle in the absence of significant quantities of insulin. However, tri-iodothyronine does not seem to be obligatory for the maintenance of normal RNA activity in muscle, since in the thyroidectomized rat, in which plasma insulin concentrations are normal, RNA activity is maintained. From a consideration of the magnitude of changes in RNA activity observed in these experiments, it would appear that alterations in rates of elongation as well as initiation are involved in the changes in RNA activity.  相似文献   

13.
RNA unwinding activity of SV40 large T antigen   总被引:32,自引:0,他引:32  
M Scheffner  R Knippers  H Stahl 《Cell》1989,57(6):955-963
Large T antigen, the regulatory protein encoded by simian virus 40, has DNA helicase activity and unwinds double-stranded DNA at the expense of ATP. T antigen also functions as an RNA helicase separating duplex regions in partially double-stranded RNA substrates. Surprisingly, T antigen RNA helicase activity requires UTP, CTP, or GTP as a cofactor, whereas ATP is an inefficient energy source for the RNA unwinding reaction. Accordingly, T antigen has both an intrinsic non-ATP NTPase activity that is stimulated by single-stranded RNA and an ATPase activity stimulated by single-stranded DNA. Thus, it appears that the bound nucleotide determines whether T antigen acts as an RNA helicase or as a DNA helicase.  相似文献   

14.
T7 gene 6 exonuclease has an RNase H activity.   总被引:6,自引:2,他引:4       下载免费PDF全文
T7 gene 6 exonuclease has been shown to have an RNase H activity as well as a double-strand specific DNase activity by the following experiments: The RNase H activity coelutes with the DNase activity from DEAE-cellulose, phosphocellulose, hydroxyapatite, and Sephadex G-200 columns. Gene 6 exonuclease specified by a T7 strain with a temperature sensitive mutation in gene 6 has an extremely heat-labile RNase H activity as well as a heat-labile DNase activity. T7 gene 6 exonuclease degrades the RNA region of a poly(A) . poly(dT) hybrid polymer exonucleolytically from the 5' terminus, releasing a ribonucleoside 5'-monophosphate product. When the RNA strand of a 0X174 RNA . DNA hybrid molecule synthesized with E. coli RNA polymerase is degraded, a ribonucleoside triphosphate is produced from the 5'-triphosphate terminus. Participation of T7 gene 6 exonuclease in the removal of primer RNA in discontinuous replication of T7 DNA is discussed.  相似文献   

15.
1. The RNA polyadenylating activity was found in embryo axes of dry, as well as imbibed and germinated pea seeds, both in nucleus and cytoplasm. 2. The total enzymatic activity remains unchanged during germination, but the intracellular distribution is altered; the activity in nuclei is increased about four-fold at the expense of the postmitochondrial fraction. 3. Specificity towards RNA primers of the polyadenylating system from pea embryo axes is low. 4. Cordycepin inhibits RNA polyadenylation only when [14C]ATP is used as a nucleotide donor, and has no visible influence on the activity of the system utilizing [14C]oligo(A)-nucleotides. 5. It seems that RNA in the pea embryo axes is polyadenylated by a two-step mechanism: synthesis of oligo(A)-nucleotides, and their addition to RNA.  相似文献   

16.
Ohtani N  Tomita M  Itaya M 《The FEBS journal》2008,275(21):5444-5455
Junction ribonuclease (JRNase) recognizes the transition from RNA to DNA of an RNA-DNA/DNA hybrid, such as an Okazaki fragment, and cleaves it, leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. Although this JRNase activity was originally reported in calf RNase H2, some other RNases H have recently been suggested to possess it. This paper shows that these enzymes can also cleave an RNA-DNA/RNA heteroduplex in a manner similar to the RNA-DNA/DNA substrate. The cleavage site of the RNA-DNA/RNA substrate corresponds to the RNA/RNA duplex region, indicating that the cleavage activity cannot be categorized as RNase H activity, which specifically cleaves an RNA strand of an RNA/DNA hybrid. Examination of several RNases H with respect to JRNase activity suggested that the activity is only found in RNase HII orthologs. Therefore, RNases HIII, which are RNase HII paralogs, are distinguished from RNases HII by the absence of JRNase activity. Whether a substrate can be targeted by JRNase activity would depend only on whether or not an RNA-DNA junction consisting of one ribonucleotide and one deoxyribonucleotide is included in the duplex. In addition, although the activity has been reported not to occur on completely single-stranded RNA-DNA, it can recognize a single-stranded RNA-DNA junction if a double-stranded region is located adjacent to the junction.  相似文献   

17.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

18.
The DEAD-box protein Mss116p promotes group II intron splicing in vivo and in vitro. Here we explore two hypotheses for how Mss116p promotes group II intron splicing: by using its RNA unwinding activity to act as an RNA chaperone or by stabilizing RNA folding intermediates. We show that an Mss116p mutant in helicase motif III (SAT/AAA), which was reported to stimulate splicing without unwinding RNA, retains ATP-dependent unwinding activity and promotes unfolding of a structured RNA. Its unwinding activity increases sharply with decreasing duplex length and correlates with group II intron splicing activity in quantitative assays. Additionally, we show that Mss116p can promote ATP-independent RNA unwinding, presumably via single-strand capture, also potentially contributing to DEAD-box protein RNA chaperone activity. Our findings favor the hypothesis that DEAD-box proteins function in group II intron splicing as in other processes by using their unwinding activity to act as RNA chaperones.  相似文献   

19.
ABSTRACT: BACKGROUND: RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers. RESULTS: To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5' pre-adenylated donor substrate. The motif V lysine mutant (K246A) showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A) abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA) as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors. CONCLUSIONS: Mutational analysis of the heat stable RNA ligase from Methanobacterium thermoautotrophicum resulted in the creation of an ATP independent ligase. The K97A mutant is defective in the first two steps of ligation but retains full activity in ligation of either RNA or ssDNA to a pre-adenylated linker. The ability of the ligase to function at 65 deg C should reduce the constraints of RNA secondary structure in RNA ligation experiments.  相似文献   

20.
RNA helicase II/Gu (RH II/Gu) is a nucleolar protein that unwinds dsRNA in a 5' to 3' direction, and introduces a secondary structure into a ssRNA. The helicase domain is at the N-terminal three-quarters of the molecule and the foldase domain is at the C-terminal quarter. The RNA folding activity of RH II/Gu is not a mere artifact of its binding to RNA. This study narrows down the RNA foldase domain to amino acids 749-801 at the C-terminus of the protein. Dissection of this region by deletion and site-directed mutagenesis shows that the four FRGQR repeats, as well as the C-terminal end bind RNA independently. These juxtaposed subdomains are both important for the RNA foldase activity of RH II/Gu. Mutation of either repeat 2 or repeat 4, or simultaneous mutation of Lys792, Arg793 and Lys797 at the C-terminal end of RH II/Gu to alanines inhibits RNA foldase activity. The last 17 amino acids of RH II/Gu can be replaced by an RNA binding motif from nucleolar protein p120 without a deleterious effect on its foldase activity. A model is proposed to explain how RH II/Gu binds and folds an RNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号