首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To analyse the historical biogeography of the lichen genus Chroodiscus using a phenotype‐based phylogeny in the context of continental drift and evolution of tropical rain forest vegetation. Location All tropical regions (Central and South America, Africa, India, Southeast Asia, north‐east Australia). Methods We performed a phenotype‐based phylogenetic analysis and ancestral character state reconstruction of 14 species of the lichen genus Chroodiscus, using paup * and mesquite ; dispersal–vicariance analysis (DIVA) and dispersal–extinction–cladogenesis (DEC) modelling to trace the geographical origin of individual clades; and ordination and clustering by means of pc‐ord , based on a novel similarity index, to visualize the biogeographical relationships of floristic regions in which Chroodiscus occurs. Results The 14 species of Chroodiscus show distinctive distribution patterns, with one pantropical and one amphi‐Pacific taxon and 12 species each restricted to a single continent. The genus comprises four clades. DIVA and DEC modelling suggest a South American origin of Chroodiscus in the mid to late Cretaceous (120–100 Ma), with subsequent expansion through a South American–African–Indian–Southeast Asian–Australian dispersal route and late diversification of the argillaceus clade in Southeast Asia. Based on the abundance of extant taxa, the probability of speciation events in Chroodiscus is shown to be extremely low. Slow dispersal of foliicolous rain forest understorey lichens is consistent with estimated phylogenetic ages of individual species and with average lengths of biological species intervals in fungi (10–20 Myr). Main conclusions The present‐day distribution of Chroodiscus can be explained by vicariance and mid‐distance dispersal through the interconnection or proximity of continental shelves, without the need for recent, trans‐oceanic long‐distance dispersal. Phylogenetic reconstruction and age estimation for Chroodiscus are consistent with the ‘biotic ferry’ hypothesis: a South American origin and subsequent eastward expansion through Africa towards Southeast Asia and north‐eastern Australia via the Indian subcontinent. The present‐day pantropical distributions of many clades and species of foliicolous lichens might thus be explained by eastward expansion through continental drift, along with the evolution of modern rain forests starting 120 Ma, rather than by the existence of a hypothetical continuous area of pre‐modern rain forest spanning South America, Africa and Southeast Asia during the mid and late Cretaceous.  相似文献   

2.
Aim The sequential break‐up of Gondwana is thought to be a dominant process in the establishment of shared biota across landmasses of the Southern Hemisphere. Yet similar distributions are shared by taxa whose radiations clearly post‐date the Gondwanan break‐up. Thus, determining the contribution of vicariance versus dispersal to seemingly Gondwanan biota is complex. The southern freshwater crayfishes (family Parastacidae) are distributed on Australia and New Guinea, South America, Madagascar and New Zealand and are unlikely to have dispersed via oceans, owing to strict freshwater limitations. We test the hypotheses that the break‐up of Gondwana has led to (1) a predominately east–west (((Australia, New Zealand: 80 Ma) Madagascar: 160–121 Ma) South America: 165–140 Ma), or (2) a southern (((Australia, South America: 52–35 Ma) New Zealand: 80 Ma) Madagascar: 160–121 Ma) pattern for parastacid crayfish. Further, we examine the evidence for a complete drowning of New Zealand and subsequent colonization by freshwater crayfish. Location Southern Hemisphere. Methods The evolutionary relationships among the 15 genera of Parastacidae were reconstructed using mitochondrial [16S, cytochrome c oxidase subunit I (COI)] and nuclear (18S, 28S) sequence data and maximum likelihood and Bayesian methods of phylogenetic reconstruction. A Bayesian (multidivtime ) molecular dating method using six fossil calibrations and phylogenetic inference was used to estimate divergence time among crayfish clades on Gondwanan landmasses. Results The South American crayfish are monophyletic and a sister group to all other southern crayfish. Australian crayfish are not monophyletic, with two Tasmanian genera, Spinastacoides and Ombrastacoides, forming a clade with New Zealand and Malagasy crayfish (both monophyletic). Divergence of crayfish among southern landmasses is estimated to have occurred around the Late Jurassic to Early Cretaceous (109–178 Ma). Main conclusions The estimated phylogenetic relationships and time of divergence among the Southern Hemisphere crayfishes were consistent with an east–west pattern of Gondwanan divergence. The divergence between Australia and New Zealand (109–160 Ma) pre‐dated the rifting at around 80 Ma, suggesting that these lineages were established prior to the break‐up. Owing to the age of the New Zealand crayfish, we reject the hypothesis that there was a complete drowning of New Zealand crayfish habitat.  相似文献   

3.
The holly genus, Ilex L., in the monogeneric Aquifoliaceae, is the largest woody dioecious genus (>664 spp.), with a near‐cosmopolitan distribution in mesic environments. We constructed a phylogeny based on two nuclear genes, representing 177 species spread across the geographical range, and dated using macrofossil records. The five main clades had a common ancestor in the early Eocene, much earlier than previously suggested. Ilex originated in subtropical Asia and extant clades colonized South America by 30 Ma, North America by 23 Ma, Australia by 8 Ma, Europe by 6 Ma, and Africa by 4 Ma. South and North America were colonized multiple times. Ilex also reached Hawaii (10 Ma) and other oceanic islands. Macrofossil and pollen records show the genus has tracked mesic climates through time and space, and had a wider distribution before late Miocene global cooling. Our phylogeny provides a framework for studies in comparative ecology and evolution.  相似文献   

4.
Aim Unrooted area networks are perhaps a general way in which different historical biogeographical patterns may be combined. Location Southeast Asia up to the West Pacific, Australia, South America. Methods Unrooted area networks based on Primary Brooks Parsimony Analysis of different data sets of Southeast Asian–West Pacific, Australian and South American clades. Results A large Brooks Parsimony historical (cladistic) biogeographic analysis of Southeast Asia and the West Pacific gave a meaningful result when all clades (representing different historical biogeographic patterns) were united into one matrix and an unrooted area network was produced. This network showed geographically adjacent areas as neighbours, which is interpreted as clades dispersing and speciating as soon as areas rafted towards each other. This pseudo‐vicariance mechanism, together with the very limited, mainly linear dispersal possibilities, a few large, widespread clades with many endemic species, and the large overlap in distributions displayed by different patterns, may explain the peculiar result. When applied to examples from other areas (bird data from Australia and South America), unrooted area networks for all data perform very poorly. Main conclusions Unrooted historical general area networks are not universally applicable. In general, it is better to split historical patterns a priori and analyse them separately.  相似文献   

5.
Several prominent evolutionary theories propose mechanisms whereby the evolution of a defensive trait or suite of traits causes significant shifts in species diversification rate and niche evolution. We investigate the role of cuticular spines, a highly variable morphological defensive trait in the hyperdiverse ant genus Polyrhachis, on species diversification and geographic range size. Informed by key innovation theory and the escape-and-radiate hypothesis, we predicted that clades with longer spines would exhibit elevated rates of diversification and larger range sizes compared to clades with shorter spines. To address these predictions, we estimated phylogenetic relationships with a phylogenomic approach utilizing ultraconserved elements and compiled morphological and biogeographic trait databases. In contrast to the first prediction, we found no association between diversification rate and any trait (spine length, body size and range size), with the sole exception of a positive association between range size and diversification in one of three trait-based diversification analyses. However, we recovered a positive phylogenetic correlation between spine length and geographic range size, suggesting that spines promote expanded geographic range. Notably, these results were consistent across analyses using different phylogenetic inference approaches and spine trait measurement schemes. This study provides a rare investigation of the role of a defensive trait on geographic range size, and ultimately supports the hypothesis that defensive spines are a factor in increased range size in Polyrhachis ants. Furthermore, the lack of support for an association between spines and diversification, which contrasts with previous work demonstrating a positive association between spines and diversification rate, is intriguing and warrants further study.  相似文献   

6.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

7.
Aim We used molecular data to answer the following questions: (1) Is morphology‐based (and to some extent, geography‐based) classification of the freshwater crab family Potamidae congruent with a molecular phylogeny? (2) What historical biogeographical event could have shaped this phylogeny? Location Material from the entire geographical range of the family Potamidae was analysed, including specimens from East Asia (China, Taiwan, the Ryukyus), Southeast Asia, South Asia (northern India, the Middle East and Near East), North Africa, and southern Europe. Methods Mitochondrial DNA sequences encoding 503 base pairs (excluding the variable regions) of the large subunit rRNA (16S rRNA) gene were obtained from 72 species belonging to 49 potamid genera, representing 51% of all known genera in this species‐rich family. Sequences were compared by means of phylogenetic analyses (minimum evolution, Bayesian inference, maximum likelihood and maximum parsimony) and Bayesian relaxed molecular clock estimates. Results The family Potamidae was found to be monophyletic with two major lineages, and there was support for the recognition of two mostly allopatric subfamilies, Potaminae and Potamiscinae. This is largely consistent with the current classification proposed. The ‘Potamiscinae’ clade comprised three subclades: (1) a well‐supported ‘eastern Asia’ subclade that included species from the eastern part of the range (China, Taiwan, the Ryukyus, the Philippines, Indochina, Malay Peninsula, northern India and Myanmar/Burma); (2) a weakly supported ‘Sunda Shelf islands’ subclade that included species from the larger Southeast Asian islands on the Sunda Shelf (Borneo, Sumatra and Java); and (3) a ‘Socotra’ subclade that comprised only Socotrapotamon from Socotra Island, off the north‐east coast of Africa. Main conclusions The discrete distribution of the two subfamilies in Europe/Asia is hypothesized to be the result of vicariance due to the collision of the Indian tectonic plate with the Asian continent, and the orogeny that caused the separation of the two freshwater crab lineages around 22.8 Ma. Within the Potamiscinae, the ‘Sunda Shelf islands’ subclade separated from other potamiscines around 21.1 Ma; and the endemic fauna of the East Asian islands (Taiwan, the Ryukyus and mainland Japan) was isolated from the Asian continent c. 8.4 Ma, following the opening of the Okinawa Trough. The ‘Socotra’ subclade diverged from the ‘eastern Asia’ subclade at 19.1 Ma during the Miocene. Its taxonomic position, however, remains unclear as the members of this clade possess the key potamine character of a transverse ridge on thoracic sternite 8, suggesting that this may in fact be a relict potamid group.  相似文献   

8.
The genus Stenamma Westwood comprises a group of cryptic, cold tolerant ants that occur throughout the Holarctic and Middle American regions. Traditional approaches to taxonomy and phylogeny are confounded by multiple factors, including the conservative and often convergent morphology of workers and the rarity of reproductive castes in collections. Monophyly of Stenamma and relationships within the genus are uncertain as nearly all previous taxonomic work has been regional in scope. Furthermore, the sister group to Stenamma has not been well established. Here an extensive molecular dataset consisting of ten genes (~8 kb of data), 48 ingroup taxa (20 Nearctic, 6 Palaearctic and 22 Neotropical) and 8 outgroup taxa (6 closely related non‐Stenamma and 2 additional myrmicines) is used to investigate the broad‐scale phylogeny and evolutionary history of Stenamma. Phylogenetic analysis is performed under maximum likelihood and Bayesian frameworks on individual genes and several alternate concatenated datasets, which are used to investigate the effects of inclusion or exclusion of COI and intronic regions. The timing of Stenamma evolution is inferred in beast and ancestral areas are reconstructed using both the s‐diva and DEC methods, as implemented in the programs rasp and lagrange , respectively. Stenamma is revealed as monophyletic with high support and tentatively is sister to a group of New World species placed currently in Aphaenogaster Mayr and Messor Forel. Within Stenamma, two major clades are recovered: a ‘Holarctic clade’ (HOC) and a ‘Middle American clade’ (MAC). The HOC consists of the European S. striatulum Emery sister to two well‐supported groups, the informal ‘debile’ and ‘brevicorne’ clades. The ‘brevicorne’ clade is entirely Nearctic, whereas the ‘debile’ clade includes both Nearctic and Palaearctic representatives. The MAC occurs from the southern United States to northern South America and, with the exception of S. huachucanum Smith, is almost completely isolated geographically from the HOC. It includes a depauperate northern clade and the ‘MAC core’, which is a diverse assemblage of wet forest adapted species found throughout Central America. Divergence dating and biogeographic reconstruction show that Stenamma is most likely to have originated in the Nearctic at the Eocene–Oligocene boundary (~35 Ma) and diversified more rapidly at 16 and 8 Ma for the HOC and MAC, respectively. Potential environmental factors affecting the evolution of Stenamma include the intense global cooling of the late Eocene combined with aridification and mountain building. The phylogenetic results are discussed in relation to the current Stenamma species groups and several new morphological characters are presented to help in identification.  相似文献   

9.
Aim To investigate the impact of climatic oscillations and recognized biogeographic barriers on the evolutionary history of the garden skink (Lampropholis guichenoti), a common and widespread vertebrate in south‐eastern Australia. Location South‐eastern Australia. Methods Sequence data were obtained from the ND4 mitochondrial gene for 123 individuals from 64 populations across the entire distribution of the garden skink. A range of phylogenetic (maximum likelihood, Bayesian) and phylogeographic analyses (genetic diversity, Tajima’s D, ΦST, mismatch distribution) were conducted to examine the evolutionary history and diversification of the garden skink. Results A deep phylogeographic break (c. 14%), estimated to have occurred in the mid–late Miocene, was found between ‘northern’ and ‘southern’ populations across the Hunter Valley in northern New South Wales. Divergences among the geographically structured clades within the ‘northern’ (five clades) and ‘southern’ (seven clades) lineages occurred during the Pliocene, with the location of the major breaks corresponding to the recognized biogeographic barriers in south‐eastern Australia. Main conclusions Climatic fluctuations and the presence of several elevational and habitat barriers in south‐eastern Australia appear to be responsible for the diversification of the garden skink over the last 10 Myr. Further molecular and morphological work will be required to determine whether the two genetic lineages represent distinct species.  相似文献   

10.
High specificity in the Ficus‐agaonid wasp mutualism has lead to the assumption of a mostly ‘one‐to‐one’ relationship, albeit with some exceptions. This view has been challenged by new molecular data in recent years, but surprisingly little is known about local and spatial genetic structuring of agaonid wasp populations. Using microsatellite markers, we analysed genetic structuring of Ceratosolen fusciceps, the fig wasp pollinating Ficus racemosa, a fig tree species widely distributed from India to Australia. In sampling stretching from the south of China to the south of Thailand we found evidence for only a single pollinating wasp species in continental South‐East Asian mainland. We found no evidence for the co‐occurrence of cryptic species within our subcontinent sampling zone. We observed no spatial genetic structure within sites and only limited structuring over the whole sampling zone, suggesting that F. racemosa is pollinated by a single population of a single agaonid wasp species all over continental South‐East Asia. An additional sample of wasps collected on F. racemosa in Australia showed clear‐cut genetic differentiation from the Asian continent, suggesting allopatric divergence into subspecies or species. We propose that the frequent local co‐occurrence of sister species found in the literature mainly stems from contact zones between biogeographic regions, and that a single pollinator species over wide areas might be the more common situation everywhere else.  相似文献   

11.
The jumping spider genus Onomastus Simon, 1900 is revised. Four new species: Onomastus indra sp. nov. , Onomastus kaharian sp. nov. , Onomastus pethiyagodai sp. nov. , and Onomastus rattotensis sp. nov. are described. Parsimony analysis of 26 morphological characters supported the monophyly of Onomastus. Lyssomanes is sister to Onomastus. Onomastus separates into two clades: the widespread South‐East Asia clade and the South Asia clade. The South Asia clade is restricted to the Sri Lanka–Western Ghats biodiversity hotspot. Species of the South Asia clade appear to be spot endemics, highly in danger of extinction because of habitat loss and climate change. Male palps are complex and species‐specific, suggesting rapid divergent evolution. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 711–745.  相似文献   

12.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

13.
Aim Nicotiana section Suaveolentes is largely endemic to Australia but includes one species endemic to Africa, one to New Caledonia and Tongatupa, and one to the Marquesas Islands in the Pacific. Other sections of Nicotiana are found in the New World. In Australia, Suaveolentes is widespread across the continent, with many taxa adapted to the Eremean zone. We aim to analyse the biogeography of the Australian clade, both to shed light on the evolution of the group and to determine general area relationships that provide insight into the history of the arid‐zone biota. Location Mesic and arid regions of continental Australia, the Central–South Pacific and Namibia, Africa. Methods A phylogeny of Suaveolentes, based on morphology and molecular data, was used to analyse the relationships of areas in which the taxa occur. The section is monophyletic, and all but three taxa were included (25). The method of paralogy‐free subtree analysis was employed, with the basal taxon Nicotiana africana used as the outgroup. Results Paralogy‐free subtree analysis found five area subtrees that, when combined, resulted in a minimal area cladogram with six resolved nodes. Pacific and mesic eastern Australia (including Lord Howe Island) are at the base of the area cladogram, followed by the differentiation of North West Australia and later South East Australia. Arid regions of Australia are related, revealing three biogeographical tracks: a northern track including the Great Sandy Desert and Tanami, which are related to the Pilbara; a central track relating the Western Desert, Central Ranges, Eastern Desert and North East Interzone; and a southern track relating the South West Interzone, Nullarbor, Adelaide/Eyre and the South East Interzone. Plesiomorphic taxa with chromosome number n = 24–23 occur on the periphery of the continent, and derived taxa with n = 21, 20, 18, 16–15 identify the tracks across arid Australia. Main conclusions The patterns of distribution and differentiation of Suaveolentes in Australia show that the age of the clade is at least Early Miocene, dating to before the onset of aridification in Australia about 15 Ma. The patterns are also interpreted as evidence that it was vicariance that largely shaped speciation in the Eremean zone, with range expansion of some widespread taxa probably occurring in the most recent cycles of severe drying and mobilization of desert dune sands.  相似文献   

14.
Leafcutter ants propagate co‐evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite‐marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade‐A and Clade‐B). The dominant and widespread Clade‐A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade‐A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade‐B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade‐A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade‐B fungi occur only in South America. Diversity of Clade‐A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov–Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot‐specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus‐growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.  相似文献   

15.
Phylogenetic interrelationships of the Neotropical electric fish genus Gymnotus are documented from comparative study of phenotypic data. A data matrix was compiled of 113 phenotypic characters for 40 taxa, including 31 recognized Gymnotus species, six allopatric populations of G. carapo, two allopatric populations of G. coropinae, and three gymno‐tiform outgroups. MP analysis yielded 15 trees of equal length, the strict consensus of which is presented as a working hypothesis of Gymnotus interrelationships. Diagnoses are presented for 26 clades, including three species groups; the G. cylindricus group with two species restricted to Middle America, the G. pantherinus group with 12 species in South America, and the G. carapo group with 16 species in South America. The basal division of Gymnotus is between clades endemic to Middle and South America. Both the G. pantherinus and G. carapo groups include trans‐Andean sister‐taxon pairs, suggesting a minimum date for the origins of these groups in the late Middle Miocene (c. 12 Ma.). The geographically widespread species G. carapo is paraphyletic. Analysis of character state evolution shows characters of external morphology are more phylogenetically plastic and provide more phylogenetic information in recent branches than do characters of internal morphology, which themselves provide the more information in deeper branches. Nine regional species assemblages of Gymnotus are recognized, none of which is monophyletic. There are at least two independent origins of Gymnotus species in sediment rich, high conductivity, perennially hypoxic whitewater floodplains (varzea´) derived from an ancestral condition of being restricted to low conductivity non‐floodplain (terra firme) black and clearwater rivers and streams. These phylogenetic, biogeographic and ecological patterns suggest a lengthy and complex history involving numerous instances of speciation, extinction, migration and coexistence in sympatry. Evolution in Gymnotus has been a continent‐wide phenomenon; i.e. Amazonian species richness is not a consequence of strictly Amazonian processes. These patterns are similar to those of other highly diverse groups of Neotropical fishes and do not resemble those of monophyletic, rapidly generated species flocks.  相似文献   

16.
The gudgeons (subfamily Gobioninae) are a group of cyprinid fishes primarily distributed in East Asia. However, studies on their origins and divergence are scarce. Here the whole mitochondrial genome sequences of 27 gudgeon species (including one newly determined), 22 other cyprinid species, and two non‐cyprinids as outgroups are applied to infer the evolution of the gudgeons. Based on Bayesian and maximum likelihood phylogenetic analyses, the gudgeons were determined to be a monophyletic group which can be further subdivided into four monophyletic clades with strong supports. The divergence times of the gudgeons were estimated using a relaxed molecular clock method; the results indicate that these fishes originated in the early Paleocene (approx. 63.5 Mya) and that the basal Hemibarbus group diverged from the other gudgeon fishes (approx. 58.3 Mya). As an independent group the Coreius began to diverge from the remaining two groups (approx. 54.6 Mya); the most derived two groups diverged from each other (approx. 53.6 Mya). The divergences of the four gudgeon groups were within a relatively short time frame (approx. 58–53 Mya). Based on the reconstruction of evolutionary trends of gudgeon habitat, evidence is provided that supports the origin and differentiation of this fauna as being associated with some special paleo‐environmental events occurring from the early Paleocene to the Pliocene. The study represents comprehensive molecular dating and character evolution analyses of the gudgeons, and providing a valuable framework for future research in the evolution of the Gobioninae fishes.  相似文献   

17.
Aim Phylogeography provides a framework to explain and integrate patterns of marine biodiversity at infra‐ and supra‐specific levels. As originally expounded, the phylogeographic hypotheses are generalities that have limited discriminatory power; the goal of this study is to generate and test specific instances of the hypotheses, thereby better elucidating both local patterns of evolution and the conditions under which the generalities do or do not apply. Location Coastal south‐east Australia (New South Wales, Tasmania and Victoria), and south‐west North America (California and Baja California). Methods Phylogeographic hypotheses specific to coastal south‐east Australia were generated a priori, principally from existing detailed distributional analyses of echinoderms and decapods. The hypotheses are tested using mitochondrial cytochrome c oxidase subunit I (COI) and nuclear internal transcribed spacer 1 (ITS1) DNA sequence data describing population variation in the jellyfish Catostylus mosaicus, integrated with comparable data from the literature. Results Mitochondrial COI distinguished two reciprocally monophyletic clades of C. mosaicus (mean ± SD: 3.61 ± 0.40% pairwise sequence divergence) that were also differentiated by ITS1 haplotype frequency differences; the boundary between the clades was geographically proximate to a provincial zoogeographic boundary in the vicinity of Bass Strait. There was also limited evidence of another genetic inhomogeneity, of considerably smaller magnitude, in close proximity to a second hypothesized zoogeographic discontinuity near Sydney. Other coastal marine species also show genetic divergences in the vicinity of Bass Strait, although they are not closely concordant with each other or with reported biogeographic discontinuities in the region, being up to several hundreds of kilometres apart. None of the species studied to date show a strong phylogeographic discontinuity across the biogeographic transition zone near Sydney. Main conclusions Patterns of evolution in the Bass Strait and coastal New South Wales regions differ fundamentally because of long‐term differences in extrinsic factors. Since the late Pliocene, periods of cold climate and low sea‐level segregated warm temperate organisms east or west of an emergent Bassian Isthmus resulting in population divergence and speciation; during subsequent periods of warmer and higher seas, sister taxa expanded into the Bass Strait region leading to weakly correlated phylogeographic and biogeographic patterns. The Sydney region, by contrast, has been more consistently favourable to shifts in species’ ranges and long‐distance movement, resulting in a lack of intra‐specific and species‐level diversification. Comparisons between the Sydney and Bass Strait regions and prior studies in North America suggest that vicariance plays a key role in generating coastal biodiversity and that dispersal explains many of the deviations from the phylogeographic hypotheses.  相似文献   

18.
The bat family Nycteridae contains only the genus Nycteris, which comprises 13 currently recognized species from Africa and the Arabian Peninsula, one species from Madagascar, and two species restricted to Malaysia and Indonesia in South‐East Asia. We investigated genetic variation, clade membership, and phylogenetic relationships in Nycteridae with broad sampling across Africa for most clades. We sequenced mitochondrial cytochrome b (cytb) and four independent nuclear introns (2,166 bp) from 253 individuals. Although our samples did not include all recognized species, we recovered at least 16 deeply divergent monophyletic lineages using independent mitochondrial and multilocus nuclear datasets in both gene tree and species tree analyses. Mean pairwise uncorrected genetic distances among species‐ranked Nycteris clades (17% for cytb and 4% for concatenated introns) suggest high levels of phylogenetic diversity in Nycteridae. We found a large number of designated clades whose members are distributed wholly or partly in East Africa (10 of 16 clades), indicating that Nycteris diversity has been historically underestimated and raising the possibility that additional unsampled and/or undescribed Nycteris species occur in more poorly sampled Central and West Africa. Well‐resolved mitochondrial, concatenated nuclear, and species trees strongly supported African ancestry for SE Asian species. Species tree analyses strongly support two deeply diverged subclades that have not previously been recognized, and these clades may warrant recognition as subgenera. Our analyses also strongly support four traditionally recognized species groups of Nycteris. Mitonuclear discordance regarding geographic population structure in Nycteris thebaica appears to result from male‐biased dispersal in this species. Our analyses, almost wholly based on museum voucher specimens, serve to identify species‐rank clades that can be tested with independent datasets, such as morphology, vocalizations, distributions, and ectoparasites. Our analyses highlight the need for a comprehensive revision of Nycteridae.  相似文献   

19.
20.
Rowson, B., Tattersfield, P. & Symondson, W. O. C. (2010). Phylogeny and biogeography of tropical carnivorous land‐snails (Pulmonata: Streptaxoidea) with particular reference to East Africa and the Indian Ocean. —Zoologica Scripta, 40, 85–98. A phylogeny is presented for the speciose, near pan‐tropical, carnivorous achatinoid land‐snail superfamily Streptaxoidea inferred from DNA sequences (two nuclear and two mitochondrial regions) from 114 taxa from Africa, the Indian Ocean, Asia, South America and Europe. In all analyses, Streptaxidae are monophyletic, while the (two to six) previously recognised subfamilies are polyphyletic, as are several genus‐level taxa including the most speciose genus Gulella, necessitating major taxonomic review. The Asian Diapheridae are sister to Streptaxidae, which forms several well‐supported clades originating in a persistent basal polytomy. Divergence dating estimates, historical biogeography, and the fossil context suggest a Cretaceous origin of these families, but suggest Gondwanan vicariance predated most radiation. The basal polytomy dates to the Paleogene and may correspond to a rapid radiation in Africa. There is evidence for multiple Cenozoic dispersals followed by radiation, including at least two from Africa to South America, at least two from Africa to Asia and at least two from Africa to Madagascar, indicating Cenozoic turnover in tropical snail faunas. The endemic Seychelles and Mascarene streptaxid faunas each are composites of early Cenozoic lineages and more recent dispersals from Africa, with no direct evidence for an Asian origin as currently proposed. Peak streptaxid diversity in East Africa is explained by Neogene speciation among a large number of coexisting ancient lineages, a phenomenon most pronounced in the Eastern Arc‐Coastal Forests centre of endemism. This includes Miocene diversification in Gulella, a primarily East and South‐East African group which remains strikingly diverse even after unrelated ‘Gulella’ species are reclassified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号