首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The phylogenetic relationships of the suprageneric groupsof the ichneumonid subfamily Pimplinae (Hymenoptera) are re‐assessedusing 166 morphological and biological characters for 162 species,representing all of the available described genera and subgenera.The cladistic analysis was repeated using abstracted genera, re‐codedfrom the ­initial set of species, as terminal taxa. Thetopology of the resulting cladograms was similar. In the first (primary) analysisseveral genera (including Neotheronia, Itoplectis, Dolichomitus, Dreisbachia, Polysphincta, Oxyrrhexis and Zonopimpla)were not retrieved as monophyletic groups; however, all except thelast were found to be monophyletic in the second analysis. Theseresults suggest that using abstracted taxa may force a ‘falsemonophyly’ on the preselected groups. Thus we reject theuse of such abstractions, preferring instead to use exemplar speciesthat together show much of the variation that occurs within a hypothesizedgenus. Within the Pimplinae three major groupings were recognized,the Delomeristini (including the Perithoini syn. nov.) , thePimplini and the Ephialtini. Within the Pimplini, two generic groupswere recovered, the Xanthopimpla and Pimpla genus‐groups,but a third postulated group, the Theronia genus‐group, wasfound to be paraphyletic. Within the Ephialtini five groups wererecognized, the Pseudopimpla, Alophosternum, Camptotypus, Ephialtes and Sericopimpla genus‐groups.The spider parasitizing complex of genera (the Polysphincta genus‐complex)was found to nest within the Sericopimpla genus‐group confirmingthe placement of Polysphinctini as a synonym of Ephialtini. Problemswith the status of some existing genera are highlighted, but formalnomenclatural changes are not proposed. The ancestral Pimplinaeare hypothesized to have been solitary ectoparasitic idiobiontson weakly concealed immature Hymenoptera. The major radiations withinthe Pimplinae are shown as: (1) a progressive exploitation of cocooned,then weakly cocooned, lepidopterous pupae in the Pimplini leadingto idiobiont endoparasitism; (2) increasing specialization to attackhosts deeply concealed in wood in the Ephialtes genus‐group,and (3) specialization on a variety of cocooned hosts, includingspider egg sacs, leading to koinobiont ectoparasitism of spiders.A brief synopsis of the distribution of the group is given, and somebiogeographical inferences drawn. The group is presumed to haveoriginated and radiated on Laurasia; no evidence for trans‐Antarcticrelationships can be found. © 2002 The LinneanSociety of London, Zoological Journal of the Linnean Society,2002, 136 , 421?485  相似文献   

3.
Phytophagous ladybird beetles of the tribe Epilachnini are a cosmopolitan, species‐rich group of significant economic importance as pests of agricultural crops. The tribe is well characterized morphologically and clearly monophyletic, but very little is known about its internal phylogenetic relationships and their genus‐level taxonomy. In order to infer the evolutionary history of Epilachnini, test its monophyly and provide a phylogeny‐based classification, we assembled a comprehensive dataset, consisting of four DNA markers (18S and 28S rRNA and 16S, COI mtDNA) and a matrix of 104 morphological characters for 153 species of Epilachnini representing all previously recognised genera, ~11% of the known species, and 14 outgroup taxa. Molecular, morphological and combined datasets were analysed using maximum likelihood, parsimony and Bayesian inference. Bayes factors and Approximately Unbiased tests (AU) were used to compare alternative phylogenetic hypotheses of unconstrained and backbone‐constrained analysis. Only 14 of the 25 included genera were recovered monophyletic, as originally defined. Afidentula Kapur, Afidenta Dieke, Afissula Kapur, Epilachna Chevrolat, Henosepilachna Li Toxotoma Weise and Mada Mulsant are shown to be poly‐ or paraphyletic; Chnootriba Chevrolat, Subafissa Bielawski, Lalokia Szawaryn & Tomaszewska and Papuaepilachna Szawaryn & Tomaszewska form monophyletic groups within larger clades of genus level. All of these genera are redefined here. The two largest genera of Epilachnini, Epilachna Chevrolat and Henosepilachna Li were represented by multiple monophyletic clades, which we described as new genera: Chazeauiana Tomaszewska & Szawaryn gen.n. ; Diekeana Tomaszewska & Szawaryn gen.n .; Fuerschia Tomaszewska & Szawaryn gen.n. and Ryszardia Tomaszewska & Szawaryn gen.n . The following new synonyms are proposed: Afissa Dieke (=Afissula Kapur); Henosepilachna Li in Li & Cook (=Subafissa Bielawski); Papuaepilachna Szawaryn & Tomaszewska (=Lalokia Szawaryn & Tomaszewska). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:440E7FA4‐C859‐47E0‐8335‐30D478CBA8FA .  相似文献   

4.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

5.
6.
Many spiders use silk to construct webs that must function for days at a time, whereas many other species renew their webs daily. The mechanical properties of spider silk can change after spinning under environmental stress, which could influence web function. We hypothesize that spiders spinning longer‐lasting webs produce silks composed of proteins that are more resistant to environmental stresses. The major ampullate (MA) silks of orb web spiders are principally composed of a combination of two proteins (spidroins) called MaSp1 and MaSp2. We expected spider MA silks dominated by MaSp1 to have the greatest resistance to post‐spin property change because they have high concentrations of stable crystalline β‐sheets. Some orb web spiders that spin three‐dimensional orb webs, such as Cyrtophora, have MA silks that are predominantly composed of MaSp1. Hence, we expected that the construction of three‐dimensional orb webs might also coincide with MA silk resistance to post‐spin property change. Alternatively, the degree of post‐spin mechanical property changes in different spider silks may be explained by factors within the spider's ecosystem, such as exposure to solar radiation. We exposed the MA silks of ten spider species from five genera (Nephila, Cyclosa, Leucauge, Cyrtophora, and Argiope) to ecologically high temperatures and low humidity for 4 weeks, and compared the mechanical properties of these silks with unexposed silks. Using species pairs enabled us to assess the influence of web dimensionality and MaSp composition both with and without phylogenetic influences being accounted for. We found neither the MaSp composition nor the three‐dimensionality of the orb web to be associated with the degree of post‐spin mechanical property changes in MA silk. The MA silks in Leucauge spp. are dominated by MaSp2, which we found to have the least resistance to post‐spin property change. The MA silk in Argiope spp. is also dominated by MaSp2, but has high resistance to post‐spin property change. The ancestry of Argiope is unresolved, but it is largely a tropical genus inhabiting hot, open regions that present similar stressors to silk as those of our experiment. Ecological factors thus appear to influence the vulnerability of orb web spider MA silks to post‐spin property change. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 580–588.  相似文献   

7.
8.
The Botiinae have traditionally represented a subfamily of the Cobitidae. At present, the classification and phylogenetic relationships of the Botiinae are controversial. To address systematic and phylogenetic questions concerning this group, we sequenced the complete cytochrome b gene from 34 samples, of which 24 represented 13 species of the East Asian botiine fishes, while the other 10 were non-botiine loach species. For the 1140 bp sequences determined, 494 sites were variable ones, of which 424 were parsimony informative. With Myxocyprinus asiaticus as an outgroup, molecular phylogenetic trees were constructed using the neighbor-joining, maximum parsimony, maximum likelihood and Bayesian methods. All molecular phylogenetic trees revealed that botiine fishes form a monophyletic group and are distantly related to other loaches, suggesting that the Botiinae should be placed in their own family. Within the Botiinae, there are three genera; Botia, Parabotia, andLeptobotia, each genus forming a monophyletic group, with the genus Botia as the most ancestral split. Our molecular results are in agreement with morphological analyses of botiines, suggesting that Botia is the ancestral genus, while Leptobotia and Parabotia were resolved as more derived sister groups.  相似文献   

9.
We conducted phylogenetic analyses based on complete mitochondrial cytochrome b gene sequences among southern and central Mexican cyprinid species, included in the genera Notropis and Hybopsis. In addition 15 northern species of the genera Notropis and Hybopsis were included in the analyses in order to place the Mexican species into a larger phylogenetic framework. The phylogenetic relationships supported the existence of five major clades: (1) including species of the subgenus Alburnops of the genus Notropis plus N. shumardi; (2) species of the subgenus Notropis; (3) species of the genus Hybopsis; (4) species of the N. texanus + N. volucellus species group of the genus Notropis; (5) Mexican endemic species of the genus Notropis plus the genus Yuriria. Previous phylogenetic inferences based on morphological characters resolved the Mexican minnows analysed as N. sallaei, N. calientis, N. boucardi and Y. alta, non‐monophyletic. According to our cytochrome b evidence all Mexican minnows of the genera Notropis and Yuriria formed a monophyletic group with respect to the northern species of the genera Notropis and Hybopsis. Within the Mexican clade, three well‐supported clades were identified: the first included the closely related species N. moralesi and N. boucardi, which occur in three independent drainages of south Mexico; the second consisted of two different lineages, N. imeldae and an undescribed species of Notropis, inhabiting two independent drainages of south Mexico; the third comprised two central Mexican Notropis species (N. calientis and N. sallaei) and the Y. alta populations. Based on this study and pending a more extensive taxonomic revision of the genus Notropis, we adopt the conservative criterion of considering all Notropis species from southern and central Mexico examined, including Y. alta, as belonging to the genus Notropis. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 323–337.  相似文献   

10.
A new Progonocimicidae species, Cicadocoris anisomeridis sp.n. , with asymmetrical tegmina is described from the Middle Jurassic Jiulongshan Formation in northeastern China. This is the fifth report of Coleorrhyncha from China. A cladistic analysis based on a combination of fossil and extant taxa clarifies the phylogenetic status of the new fossils and allows the reconstruction of inter‐subfamily relationships within the suborder Coleorrhyncha. Coleorrhyncha is monophyletic and divided into two main clades. Progonocimicidae comprises a monophyletic lineage, to which the new fossils belong. The broadly conceived Progonocimicinae and Cicadocorinae, as recognized by earlier authors, are not supported. The monophyly of the family Karabasiidae is also not supported, and its two constituent subfamilies Hoploridiinae and Karabasiinae are raised to family rank. Hoploridiidae is found to be sister group to all extant moss bugs, and Karabasiidae is found to be the monophyletic sister group to Hoploridiidae + all extant moss bugs. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:30BC0498‐3B8A‐4650‐BC9D‐02A0C8D870B2 .  相似文献   

11.
The taxonomy of Lomechusini Fleming has a complex history. Recent studies have shown that this group is polyphyletic; however, little is known about the evolutionary interrelationships among its constituent genera. The goals of the present study are to infer the phylogenetic relationships of Falagonia Sharp and closely related genera; to define the boundaries of those genera based on synapomorphic characters; and to explore the evolution of myrmecophily within the lineage. The phylogenetic analyses are based exclusively on morphological characters of adults. A total of 36 operational taxonomic units were used for the analysis. The best trees were selected based on maximum parsimony and Bayesian inference. During the parsimony reconstruction, different weighting strategies were used to recover the most robust phylogenetic hypothesis. Although minor differences were observed in the results of the different analyses, the topologies were consistent throughout. Several groups of genera proposed by Seevers (1965), such as the ‘Tetradonia’ and ‘Ecitopora’ groups, were not recovered. Thus, these may represent nonmonophyletic groups that were based on nonsynapomorphic diagnostic characters. Our analyses consistently recovered the genera Asheidium Santiago‐Jiménez, Delgadoidium Santiago‐Jiménez, Falagonia, Newtonidium Santiago‐Jiménez, Pseudofalagonia Santiago‐Jiménez, Sharpidium Santiago‐Jiménez, Tetradonia Wasmann and Thayeridium Santiago‐Jiménez, forming a monophyletic group that we have called the ‘Asheidium complex’. Falagonia mexicana Sharp shows seven autapomorphies, none of which were used to establish the genus. Based on the phylogenetic results, myrmecophily has evolved independently at least three times within the lineage. This study, based on morphological characters, is one of the first approaches towards gaining an understanding of the phylogenetic relationships within the polyphyletic tribe Lomechusini.  相似文献   

12.
Kanouh, M., Tixier, M.‐S., Okassa, M. & Kreiter, S. (2010). Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae) —Zoologica Scripta, 39, 450–461. The taxonomy of the genus Phytoseiulus (sub‐family Amblyseiinae), has a tumultuous and confused history. This genus currently contains four species, but in previous revisions it contained five, sometimes grouped in two genera. There are no thorough phylogenetic analyses available for the group, analyses against which taxonomic and evolutionary hypotheses could be tested. The present study aims to apply morphological and molecular data to determine phylogenetic relationships among the four species presently included in this genus plus Afroseiulus robertsi, which was previously included in this genus. The new analyses show that the species of the genus Phytoseiulus do not constitute a monophyletic group. A delineation between (i) P. macropilis, P. persimilis, P. fragariae and (ii) P. longipes and A. robertsi is observed. Biogeographic data sets showed that the Neotropical and Afrotropical regions contain the highest diversity of species of Phytoseiulus and of their host plants. Consequently, the western part of Gondwana is hypothesized to be the probable centre of origin for this taxon.  相似文献   

13.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

14.
The ant genus Proformica is very common to Eurasian semi‐deserts, and a few species are parasitized by the slave‐making ants Rossomyrmex. However, the phylogenetic relationship between Proformica (host) and Rossomyrmex (parasite) remains unclear as another closely related genus (Cataglyphis) could be a sister group of Rossomyrmex. This work has two main goals: (i) to study the phylogenetic relationships among Proformica, Rossomyrmex, and other genera of the tribe Formicini, with a special focus on the highly diverse genus Cataglyphis; and (ii) to reconstruct the biogeographical distribution of parasite and host genera. We perform a phylogenetic study for the first time including several species of the genera Rossomyrmex, Proformica, and Cataglyphis. Our results indicate that Proformica and Rossomyrmex are reciprocally monophyletic and that Rossomyrmex is nested within Cataglyphis, rendering the latter paraphyletic. Finally, the ancestral distribution range of the host genus could be situated in Central Asia and subsequently dispersed to Western Europe, whereas additional studies are required to clarify the range of the parasite.  相似文献   

15.
Dung beetle species belonging to the worldwide tribe Canthonini (Scarabaeidae) and occurring in Madagascar are all endemic to that island. The Malagasy Canthonini form three lineages, one of which is the group Longitarsi that includes five genera. The phylogenetic relationships of Malagasy Canthonini are not fully resolved and only few species of Longitarsi have been included in previous studies. Here we infer the phylogenetic relationships within the Longitarsi group using molecular data and together with morphological examination revise the systematics of the group. The five genera of the Longitarsi group form one monophyletic clade and thus we suggest the synonymization of the younger genera Sikorantus, Phacosomoides, Madaphacosoma and Aleiantus; with the oldest genus belonging to this clade Epactoides. We describe two new species: Epactoides jounii sp. n and Epactoides mangabeensis sp. n. Most of the species of Longitarsi inhabit the eastern rainforests, with very low local species diversity and highly restricted geographical ranges. In the group Longitarsi four species are wingless. The loss of wings has evolved at least twice, at high altitude along the mountain range.  相似文献   

16.
Genera of Eutheiini are reviewed and Eutheimorphus is removed from this tribe of ant‐like stone beetles (Scydmaeninae) and transferred to Cephenniini. A monogeneric Marcepaniini trib.n. is described to accommodate Marcepania gen.n. from Malaysia, with five species: M. semengohensis sp.n. (the type species of Marcepania), M. tuberculata sp.n. , M. seramaensis sp.n. , M. minutissima sp.n. and M. elongata sp.n. A phylogenetic analysis of all genera of Cephenniini, Eutheiini and Marcepaniini based on adult morphological characters resulted in recovering a well‐supported monophyletic clade Eutheiini + (Marcepaniini + Cephenniini) and these tribes are included in Cephenniitae stat.n. (Eutheiini and Cephenniini are therefore removed from Scydmaenitae). Only a weak support for monophyly of Eutheiini was found, but morphological characters allow for maintaining this presumably relic group as a separate tribe. Previously proposed monophyletic groups within Cephenniini were recovered as such, but after inclusion of Eutheimorphus, a sister taxon to the ‘Cephennomicrus group’, the latter lineage gained weak statistical support. The evolutionary history of Cephenniitae is discussed, with focus on known northern hemisphere fossils classified in Scydmaenitae and Hapsomelitae, but possibly closely allied to Cephenniitae. Establishing the supertribe Cephenniitae is the first step toward a profound reclassification of Scydmaeninae on a robust phylogenetic basis. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:B0E1B12D-9587-4C4F-A908-A12A0C424A8C .  相似文献   

17.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   

18.
A partial sequence of the cytb gene (382 bp) was amplified and sequenced from 35 individuals (mainly museum specimens) of the genus Pernis representing all valid taxa (10) and two taxa (P. p. gurneyi, P. p. japonicus) with questionable validity as well as representatives of the Old World Perninae, namely Henicopernis and Aviceda, to assess their relationships to the genus Pernis. Furthermore, Gypaetus barbatus, Neophron percnopterus, and Buteo buteo were included as outgroup taxa. In the trees derived from the sequence data, Aviceda represents the sister group of the genus Pernis. The genus Henicopernis and the Old World vultures Gypaetus andNeophron appear rather distantly related to Pernis. Within the genus Pernis, two of the described species (Pernis apivorus, Pernis ptilorhyncus) form monophyletic groups, whereas the relationships of the two clades representing three subspecies of Pernis celebensis are still uncertain. Although this study is based on comparatively short DNA‐sections, the trees deduced from these sequences can be considered as a first approach for inferring the phylogenetic relationships of the genus Pernis and related genera and for addressing questions concerning the evolutionary history, biogeography, and systematics of this group.  相似文献   

19.
Parasitoid wasps of the subfamily Telenominae (Hymenoptera: Platygastroidea, Platygastridae) develop as immatures within the eggs of other insects (Lepidoptera, Hemiptera, Diptera and Neuroptera). Rearing records indicate that individual species are restricted to attack hosts within only one of these four main groups. We conducted a phylogenetic analysis of the group using sequence data from multiple genes (18S, 28S, COI, EF‐1α) to assess the pattern of shifts among host groups and to test the monophyly of and relationships among genera and species‐groups. Telenominae sensu Masner—that is, including only the nominate tribe Telenomini—is not monophyletic. Representatives of the Psix group of genera (Psix Kozlov & Lê and Paratelenomus Dodd) form a monophyletic group that is sister to Gryon Haliday (Scelioninae: Gryonini) and are excluded from the subfamily. The remaining telenomines are monophyletic. The genus Phanuromyia Dodd and the crassiclava group of Telenomus Haliday, both recorded as parasitoids of planthopper eggs (Hemiptera: Auchenorrhyncha, Fulgoroidea), form a monophyletic group that is sister to all other telenomines exclusive of the Psix group. Twenty‐nine species of the crassiclava and aradi groups of Telenomus are transferred to Phanuromyia as new combinations. Basal elements of the remaining species are all in groups reared from the eggs of true bugs (Heteroptera), primarily the stink bugs (Pentatomoidea) and seed bugs (Lygaeoidea). A shift to parasitism of lepidopteran eggs evolved within a single clade, occurring either one or two times. From this clade a small group of species, the Telenomus tabanivorus group, subsequently shifted to parasitism of egg masses of true flies (Tabanidae and Stratiomyiidae). Aholcus Kieffer and Platytelenomus Dodd both belong to the clade of lepidopteran parasitoids and are considered as junior synonyms of Telenomus (new synonymy for Aholcus). The monophyletic status of the two core genera, Telenomus and Trissolcus could not be resolved using these data. The phylogenetic pattern of host shifts suggests comparisons among taxa that may be fruitful in elucidating mechanisms by which parasitoids locate their hosts, the proximate factors that determine the host range, and the changes in these factors that influence host changes.  相似文献   

20.
The classification and evolutionary relationships are important issues in the study of the groupers. Cytochrome b gene fragment of twenty-eight grouper species within six genera of subfamily Epinephelinae was amplified using PCR techniques and the sequences were analyzed to derive the phylogenetic relationships of the groupers from the China Seas. Genetic information indexes, including Kimura-2 parameter genetic distance and T S/T V ratios, were generated by using a variety of biology softwares. With Niphon spinosus, Pagrus major and Pagrus auriga as the designated outgroups, phylogenetic trees, which invoke additional homologous sequences of other Epinephelus fishes from GenBank, were constructed based on the neighbor-joining (NJ), maximum-parsimony (MP), maximum-likelihood (ML) and minimum-evolution (ME) methods. Several conclusions were drawn from the DNA sequences analysis: (1) genus Plectropomus, which was early diverged, is the most primitive group in the subfamily Epinephelinae; (2) genus Variola is more closely related to genus Cephalopolis than the other four genera; (3) genus Cephalopolis is a monophyletic group and more primitive than genus Epinephelus; (4) Promicrops lanceolatus and Cromileptes altivelis should be included in genus Epinephelus; (5) there exist two sister groups in genus Epinephelus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号