首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Advanced backcross QTL analysis is proposed as a method of combining QTL analysis with variety development. It is tailored for the discovery and transfer of valuable QTL alleles from unadapted donor lines (e.g., land races, wild species) into established elite inbred lines. Following this strategy, QTL analysis is delayed until the BC2 or BC3 generation and, during the development of these populations, negative selection is exercised to reduce the frequency of deleterious donor alleles. Simulations suggest that advanced backcross QTL analysis will be effective in detecting additive, dominant, partially dominant, or overdominant QTLs. Epistatic QTLs or QTLs with gene actions ranging from recessive to additive will be detected with less power than in selfing generations. QTL-NILs can be derived from advanced backcross populations in one or two additional generations and utilized to verify QTL activity. These same QTL-NILs also represent commercial inbreds improved (over the original recurrent inbred line) for one or more quantitative traits. The time lapse from QTL discovery to construction and testing of improved QTL-NILs is minimal (1–2 years). If successfully employed, advanced backcross QTL analysis can open the door to exploiting unadapted and exotic germplasm for the quantitative trait improvement of a number of crop plants.  相似文献   

2.
Milling yield, or the grain weight from which 100 kg of rolled groats is obtained upon milling, is an important quality characteristic of cultivated oat (Avena sativa L.). Kernel morphology and the groat (caryopsis) percentage of the whole kernel including hull are factors that influence milling yield. We mapped QTLs for kernel area, kernel length, kernel width, and groat percentage in two populations of 137 recombinant inbred lines by RFLP and AFLP analysis to evaluate the prospects of marker-assisted selection (MAS). Phenotypic correlations between kernel morphology traits and groat percentage were not significant. For kernel morphology traits and groat percentage, one to five QTLs were detected, explaining 7.0–60.7% of the total phenotypic variance depending on the trait. One QTL for kernel length in each population and one QTL for kernel width in one population were found at the same location as a QTL for groat percentage, indicating that a change in kernel size or shape could have an influence on groat percentage. The positions and effects of QTLs for kernel morphology and groat percentage were compared to QTLs detected previously for chemical grain composition (oil andβ-glucanconcentration) and agronomic traits to evaluate the selection response on these traits through MAS. Several regions of the oat genome were identified that contained clusters of QTLs influencing two or more traits. While the allele from one parent at a QTL could simultaneously improve two or more traits in one population, it could have opposite effects on the same traits at another QTL or in the other population. Associations among traits were complex and will require careful consideration when employing QTL-marker associations in MAS to avoid negative selection response. Future research to discover candidate genes for those QTL clusters could provide information about trait associations and help in designing selection programs. Received: 17 February 2000 / Accepted: 27 October 2000  相似文献   

3.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

4.
T Qi  B Jiang  Z Zhu  C Wei  Y Gao  S Zhu  H Xu  X Lou 《Heredity》2014,113(3):224-232
The crop seed is a complex organ that may be composed of the diploid embryo, the triploid endosperm and the diploid maternal tissues. According to the genetic features of seed characters, two genetic models for mapping quantitative trait loci (QTLs) of crop seed traits are proposed, with inclusion of maternal effects, embryo or endosperm effects of QTL, environmental effects and QTL-by-environment (QE) interactions. The mapping population can be generated either from double back-cross of immortalized F2 (IF2) to the two parents, from random-cross of IF2 or from selfing of IF2 population. Candidate marker intervals potentially harboring QTLs are first selected through one-dimensional scanning across the whole genome. The selected candidate marker intervals are then included in the model as cofactors to control background genetic effects on the putative QTL(s). Finally, a QTL full model is constructed and model selection is conducted to eliminate false positive QTLs. The genetic main effects of QTLs, QE interaction effects and the corresponding P-values are computed by Markov chain Monte Carlo algorithm for Gaussian mixed linear model via Gibbs sampling. Monte Carlo simulations were performed to investigate the reliability and efficiency of the proposed method. The simulation results showed that the proposed method had higher power to accurately detect simulated QTLs and properly estimated effect of these QTLs. To demonstrate the usefulness, the proposed method was used to identify the QTLs underlying fiber percentage in an upland cotton IF2 population. A computer software, QTLNetwork-Seed, was developed for QTL analysis of seed traits.  相似文献   

5.
A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa.  相似文献   

6.
We searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E. oleifera (H.B.K) Cortés. The oil palm cross LM2T x DA10D between two heterozygous parents was considered in our experiment as an intraspecific representative of E. guineensis. Its QTLs were compared to QTLs published for the same traits in an interspecific Elaeis pseudo-backcross used as an indirect representative of E. oleifera. Few correlations were found in E. guineensis between pulp fatty acid proportions and yield traits, allowing for the rather independent selection of both types of traits. Sixteen QTLs affecting palm oil fatty acid proportions and iodine value were identified in oil palm. The phenotypic variation explained by the detected QTLs was low to medium in E. guineensis, ranging between 10% and 36%. The explained cumulative variation was 29% for palmitic acid C16:0 (one QTL), 68% for stearic acid C18:0 (two QTLs), 50% for oleic acid C18:1 (three QTLs), 25% for linoleic acid C18:2 (one QTL), and 40% (two QTLs) for the iodine value. Good marker co-linearity was observed between the intraspecific and interspecific Simple Sequence Repeat (SSR) linkage maps. Specific QTL regions for several traits were found in each mapping population. Our comparative QTL results in both E. guineensis and interspecific materials strongly suggest that, apart from two common QTL zones, there are two specific QTL regions with major effects, which might be one in E. guineensis, the other in E. oleifera, which are independent of each other and harbor QTLs for several traits, indicating either pleiotropic effects or linkage. Using QTL maps connected by highly transferable SSR markers, our study established a good basis to decipher in the future such hypothesis at the Elaeis genus level.  相似文献   

7.
Marker-Assisted Introgression of Quantitative Trait Loci   总被引:37,自引:2,他引:35       下载免费PDF全文
F. Hospital  A. Charcosset 《Genetics》1997,147(3):1469-1485
The use of molecular markers for the introgression of one or several superior QTL alleles into a recipient line is investigated using analytic and simulation results. The positions of the markers devoted to the control of the genotype at the QTLs in a ``foreground selection' step are optimized given the confidence interval of the QTL position. Results demonstrate that using at least three markers per QTL allows a good control over several generations. Population sizes that should be recommended for various numbers of QTLs are calculated and are used to determine the limit in the number of QTLs that can be monitored simultaneously. If ``background selection' devoted to accelerate the return to the recipient parent genotype outside the QTL regions is applied, the positions of the markers devoted to the control of the QTLs have to be reconsidered. When several QTLs are monitored simultaneously, background selection among the limited number of individuals resulting from the foreground selection step accelerates the increase in genomic similarity with the recipient parent, with only limited costs. Background selection is even more efficient in a pyramidal backcross program where QTLs are first monitored one by one.  相似文献   

8.
 A deep thick root system has been demonstrated to have a positive effect on yield of upland rice under water stress conditions. Molecular-marker-aided selection could be helpful for the improvement of root morphological traits, which are otherwise difficult to score. We studied a doubled-haploid population of 105 lines derived from an indica×japonica cross and mapped the genes controlling root morphology and distribution (root thickness, maximum root length, total root weight, deep root weight, deep root weight per tiller, and deep root to shoot ratio). Most putative QTL activity was concentrated in fairly compact regions on chromosomes 1, 2, 3, 6, 7, 8 and 9, but was widely spread on chromosome 5 and largely absent on chromosomes 4, 10, 11 and 12. Between three and six QTLs were identified on different chromosomes for each trait. Individual QTLs accounted for between 4 and 22% of the variation in the traits. Multiple QTL models accounted for between 14 and 49%. The main QTLs were common between traits, showing that it should be possible to modify several aspects of root morphology simultaneously. There was evidence of interaction between marker locations in determining QTL expression. Interacting locations were mostly on different chromosomes and showed antagonistic effects with magnitudes large enough to mask QTL detection. The comparison of QTL locations with another population showed that one to three common QTLs per trait were recovered, among which the most significant was in one or other population. These results will allow the derivation of isogenic lines introgressed with these common segments, separately in the indica and japonica backgrounds. Received: 12 August 1996 / Accepted: 15 November 1996  相似文献   

9.
The evolution of morphological modularity through the sequestration of pleiotropy to sets of functionally and developmentally related traits requires genetic variation in the relationships between traits. Genetic variation in relationships between traits can result from differential epistasis, where epistatic relationships for pairs of loci are different for different traits. This study maps relationship quantitative trait loci (QTLs), specifically QTLs that affect the relationship between individual mandibular traits and mandible length, across the genome in an F2 intercross of the LG/J and SM/J inbred mouse strains (N = 1045). We discovered 23 relationship QTLs scattered throughout the genome. All mandibular traits were involved in one or more relationship QTL. When multiple traits were affected at a relationship QTL, the traits tended to come from a developmentally restricted region of the mandible, either the muscular processes or the alveolus. About one-third of the relationship QTLs correspond to previously located trait QTLs affecting the same traits. These results comprise examples of genetic variation necessary for an evolutionary response to selection on the range of pleiotropic effects.  相似文献   

10.
One hundred twenty six doubled-haploid (DH) rice lines were evaluated in nine diverse Asian environments to reveal the genetic basis of genotype × environment interactions (GEI) for plant height (PH) and heading date (HD). A subset of lines was also evaluated in four water-limited environments, where the environmental basis of G × E could be more precisely defined. Responses to the environments were resolved into individual QTL × environment interactions using replicated phenotyping and the mixed linear-model approach. A total of 37 main-effect QTLs and 29 epistatic QTLs were identified. On average, these QTLs were detectable in 56% of the environments. When detected in multiple environments, the main effects of most QTLs were consistent in direction but varied considerably in magnitude across environments. Some QTLs had opposite effects in different environments, particularly in water-limited environments, indicating that they responded to the environments differently. Inconsistent QTL detection across environments was due primarily to non- or weak-expression of the QTL, and in part to significant QTL × environment interaction effects in the opposite direction to QTL main effects, and to pronounced epistasis. QTL × environment interactions were trait- and gene-specific. The greater GEI for HD than for PH in rice were reflected by more environment-specific QTLs, greater frequency and magnitude of QTL × environment interaction effects, and more pronounced epistasis for HD than for PH. Our results demonstrated that QTL × environment interaction is an important property of many QTLs, even for highly heritable traits such as height and maturity. Information about QTL × environment interaction is essential if marker-assisted selection is to be applied to the manipulation of quantitative traits.Communicated by G. Wenzel  相似文献   

11.
Selective genotyping is the marker assay of only the more extreme phenotypes for a quantitative trait and is intended to increase the efficiency of quantitative trait loci (QTL) mapping. We show that selective genotyping can bias estimates of the recombination frequency between linked QTLs — upwardly when QTLs are in repulsion phase, and downwardly when QTLs are in coupling phase. We examined these biases under simple models involving two QTLs segregating in a backcross or F2 population, using both analytical models and computer simulations. We found that bias is a function of the proportion selected, the magnitude of QTL effects, distance between QTLs and the dominance of QTLs. Selective genotyping thus may decrease the power of mapping multiple linked QTLs and bias the construction of a marker map. We suggest a large proportion than previously suggested (50%) or the entire population be genotyped if linked QTLs of large effects (explain > 10% phenotypic variance) are evident. New models need to be developed to explicitly incorporate selection into QTL map construction.  相似文献   

12.
BACKGROUND AND AIMS: Serpentine soils provide a highly selective substrate for plant colonization and growth and represent an ideal system for studying the evolution of plant-ecotypes. In the present study the aim was to identify the genetic architecture of morphological traits distinguishing serpentine and non-serpentine ecotypes of Silene vulgaris. METHODS: Using an F(2) mapping population derived from an intraspecific cross between a serpentine and a non-serpentine ecotype of S. vulgaris, the genetic architecture of 12 morphological traits was explored using a quantitative trait locus (QTL) analysis. KEY RESULTS: The QTL analysis identified a total of 49 QTLs, of which 24 were classified as major QTLs. The mean number of QTLs per trait category was found to correspond well with numbers reported in the literature for similar crosses. Clustering of QTLs for different traits was found on several linkage groups. CONCLUSIONS: Morphological traits that differentiate the two ecotypes are strongly correlated, presumably as a consequence of the joint effects of extensive linkage of QTLs for different traits and directional selection. The signature of consistent directional selection was found for leaf and shoot trait divergence. Intraspecific ecotype differences in S. vulgaris were found to be distributed across the entire genome. The study shows that QTL analyses on non-model organisms can provide novel insights into the genetic basis of plant diversification.  相似文献   

13.
Here, we describe a randomization testing strategy for mapping interacting quantitative trait loci (QTLs). In a forward selection strategy, non-interacting QTLs and simultaneously mapped interacting QTL pairs are added to a total genetic model. Simultaneous mapping of epistatic QTLs increases the power of the mapping strategy by allowing detection of interacting QTL pairs where none of the QTL can be detected by their marginal additive and dominance effects. Randomization testing is used to derive empirical significance thresholds for every model selection step in the procedure. A simulation study was used to evaluate the statistical properties of the proposed randomization tests and for which types of epistasis simultaneous mapping of epistatic QTLs adds power. Least squares regression was used for QTL parameter estimation but any other QTL mapping method can be used. A genetic algorithm was used to search for interacting QTL pairs, which makes the proposed strategy feasible for single processor computers. We believe that this method will facilitate the evaluation of the importance at epistatic interaction among QTLs controlling multifactorial traits and disorders.  相似文献   

14.
Lycopersicon parviflorum is a sexually compatible, wild tomato species which has been largely unutilized in tomato breeding. The Advanced Backcross QTL (AB-QTL) strategy was used to explore this genome for QTLs affecting traits of agronomic importance in an interspecific cross between a tomato elite processing inbred, Lycopersicon esculentum E6203, and the wild species L. parviflorum (LA2133). A total of 170 BC2 plants were genotyped by means of 133 genetic markers (131 RFLPs; one PCR-based marker, I-2, and one morphological marker, u, uniform ripening). Approximately 170 BC3 families were grown in replicated field trials, in California, Spain and Israel, and were scored for 30 horticultural traits. Significant putative QTLs were identified for all traits, for a total of 199 QTLs, ranging from 1 to 19 QTLs detected for each trait. For 19 (70%) traits (excluding traits for which effects of either direction are not necessarily favourable or unfavourable) at least one QTL was identified for which the L. parviflorum allele was associated with an agronomically favourable effect, despite the overall inferior phenotype of the wild species. Received: 14 September 1999 / Accepted: 7 October 1999  相似文献   

15.
We performed a quantitative trait locus (QTL) analysis of eight body weights recorded weekly from 3 weeks to 10 weeks after birth and two weight gains recorded between 3 weeks and 6 weeks, and between 6 weeks and 10 weeks in an inter-sub-specific backcross population of wild Mus musculus castaneus mice captured in the Philippines and the common inbred strain C57BL/6J ( M. musculus domesticus ), to elucidate the complex genetic architecture of body weight and growth. Interval mapping identified 17 significant QTLs with main effects on 11 chromosomes. In particular, the main effect of the most potent QTL on proximal chromosome 2 increased linearly with age, whereas other QTLs exerted effects on either the early or late growth period. Surprisingly, although wild mice displayed 60% of the body size of their C57BL/6J counterparts, the wild-derived allele enhanced growth at two QTLs. Interestingly, five of the 17 main-effect QTLs identified had significant epistatic interaction effects. Five new epistatic QTLs with no main effects were identified on different chromosomes or regions. For one pair of epistatic QTLs, mice that were heterozygous for the wild-derived allele at one QTL and homozygous for that allele at another QTL exhibited the most rapid growth in all four possible genotypic combinations. Out of the identified QTLs, several showed significant sex-specific effects.  相似文献   

16.
Y Cui  F Zhang  J Xu  Z Li  S Xu 《Heredity》2015,115(6):538-546
Quantitative trait locus (QTL) mapping is often conducted in line-crossing experiments where a sample of individuals is randomly selected from a pool of all potential progeny. QTLs detected from such an experiment are important for us to understand the genetic mechanisms governing a complex trait, but may not be directly relevant to plant breeding if they are not detected from the breeding population where selection is targeting for. QTLs segregating in one population may not necessarily segregate in another population. To facilitate marker-assisted selection, QTLs must be detected from the very population which the selection is targeting. However, selected breeding populations often have depleted genetic variation with small population sizes, resulting in low power in detecting useful QTLs. On the other hand, if selection is effective, loci controlling the selected trait will deviate from the expected Mendelian segregation ratio. In this study, we proposed to detect QTLs in selected breeding populations via the detection of marker segregation distortion in either a single population or multiple populations using the same selection scheme. Simulation studies showed that QTL can be detected in strong selected populations with selected population sizes as small as 25 plants. We applied the new method to detect QTLs in two breeding populations of rice selected for high grain yield. Seven QTLs were identified, four of which have been validated in advanced generations in a follow-up study. Cloned genes in the vicinity of the four QTLs were also reported in the literatures. This mapping-by-selection approach provides a new avenue for breeders to improve breeding progress. The new method can be applied to breeding programs not only in rice but also in other agricultural species including crops, trees and animals.  相似文献   

17.
Accuracy of mapping quantitative trait loci in autogamous species   总被引:21,自引:0,他引:21  
Summary The development of linkage maps with large numbers of molecular markers has stimulated the search for methods to map genes involved in quantitative traits (QTLs). A promising method, proposed by Lander and Botstein (1989), employs pairs of neighbouring markers to obtain maximum linkage information about the presence of a QTL within the enclosed chromosomal segment. In this paper the accuracy of this method was investigated by computer simulation. The results show that there is a reasonable probability of detecting QTLs that explain at least 5% of the total variance. For this purpose a minimum population of 200 backcross or F2 individuals is necessary. Both the number of individuals and the relative size of the genotypic effect of the QTL are important factors determining the mapping precision. On the average, a QTL with 5% or 10% explained variance is mapped on an interval of 40 or 20 centiMorgans, respectively. Of course, QTLs with a larger genotypic effect will be located more precisely. It must be noted, however, that the interval length is rather variable.  相似文献   

18.
Fusarium head blight (FHB) in barley and wheat, caused by Fusarium graminearum, is a continual problem worldwide. Primarily, FHB reduces yield and quality, and results in the production of the toxin deoxynivalenol (DON), which can affect food safety. Identification of QTLs for FHB severity, DON level and related traits heading-date (HD) and plant-height (HT) with consistent effects across a set of environments, would provide the basis for marker-assisted selection (MAS) and potentially increase the efficiency of selection for resistance. A segregating population of 75 double-haploid lines, developed from the three-way cross Zhedar 2/ND9712//Foster, was used for genome mapping and FHB severity evaluation. A linkage map of 214 RFLP, SSR and AFLP markers was constructed. Phenotypic data were collected in replicated field trials from five environments in two growing seasons. The data were analyzed using MQTL software to detect quantitative trait locus (QTL) × environment (E) interactions. Because of the presence of QTL × E, the MQM procedure in MAPQTL was applied to identify QTLs in single environments. We identified nine QTLs for FHB severity and five for low DON. Many of the disease-related QTLs identified were coincident with FHB QTLs identified in previous studies. Only two of the QTLs identified in this study were consistent across all five environments, and both were Zhedar 2 specific. Five of the FHB QTLs were associated with HD, and two were associated with HT. Regions that appear to be promising candidates for MAS and further genetic analysis include the two FHB QTLs on chromosome 2H and one on 6H, which were also associated with low DON and later heading-date in multiple environments. This study provides a starting point for manipulating Zhedar 2-derived resistance by MAS in barley to develop cultivars that will show effective resistance under disease pressure.Communicated by H.F. Linskens  相似文献   

19.
A strategy of multi-step minimal conditional regression analysis has been developed to determine the existence of statistical testing and parameter estimation for a quantitative trait locus (QTL) that are unaffected by linked QTLs. The estimation of marker-QTL recombination frequency needs to consider only three cases: 1) the chromosome has only one QTL, 2) one side of the target QTL has one or more QTLs, and 3) either side of the target QTL has one or more QTLs. Analytical formula was derived to estimate marker-QTL recombination frequency for each of the three cases. The formula involves two flanking markers for case 1), two flanking markers plus a conditional marker for case 2), and two flanking markers plus two conditional markers for case 3). Each QTL variance and effect, and the total QTL variance were also estimated using analytical formulae. Simulation data show that the formulae for estimating marker-QTL recombination frequency could be a useful statistical tool for fine QTL mapping. With 1 000 observations, a QTL could be mapped to a narrow chromosome region of 1.5 cM if no linked QTL is present, and to a 2.8 cM chromosome region if either side of the target QTL has at least one linked QTL.  相似文献   

20.
Much of sexual selection theory depends on assumptions about the genetic basis of variation in male mating success and sperm competitive ability. Despite intense interest in this topic, few genes have been identified that contribute to variation in these traits. Here we report the results of quantitative trait locus (QTL) analyses of mating success of male Drosophila melanogaster when exposed to virgin females, remating success of males with previously mated females, and both defense and offense components of sperm competition. We found two to four significant QTLs for remating success, but no QTLs for mating success, even though mating success was more genetically variable than remating success in the recombinant inbred lines used in this study. By combining these results with data from previous gene-expression experiments, we were able to identify three X-linked candidate genes for variation in remating ability. For two of these genes, QTL and expression data were completely concordant with respect to directionality of effects: high mating success was associated with high levels of gene expression and with beneficial QTL effects on the trait. We found equivocal evidence for genetic variation in sperm offense and defense in the recombinant inbred lines, and we did not find any significant QTLs for either sperm competition trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号