首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pH dependence of the initial uptake of norepinephrine by rat whole brain synaptosomes was studied short incubation times at 37°C in order to examine the possible involvement of the phenolic OH group. The pH vs. uptake profile exhibits a maximum near pH 8.2 in H2O medium. When the medium was changed to 2H2O, the profile showed a shift of maximum corresponding to the pKa change of the phenolic OH group. The pH vs. uptake profile of tyramine was quite different from that of norepinephrine. These pH effects on uptake were explained as manifestations of the involvement of the phenolic OH group in the process.The amine and phenolic hydroxyl groups in norepinephrine were studied separately by employing two series of compounds structurally related to catecholamines, amphetamine-like and catechol0like, for their inhibitory effects on the uptake. The inhibitions were affected by changes in pH with changes in opposite directions found for the two series indicating the need for a positive charge in the side chain and suggesting an effect of the negative charge on the ring. These charge characteristics agreed with the pH profile observed in uptake. Consequently, the two groups with opposite charge characteristics in norepinephrine both appear to function in the uptake process.  相似文献   

2.
A study is presented on proton transfer associated with the reaction of the fully reduced, purified bovine heart cytochrome c oxidase with molecular oxygen or ferricyanide. The proton consumption associated with aerobic oxidation of the four metal centers changed significantly with pH going from approximately 3.0 H(+)/COX at pH 6.2-6.3 to approximately 1.2 H(+)/COX at pH 8.0-8.5. Rereduction of the metal centers was associated with further proton uptake which increased with pH from approximately 1.0 H(+)/COX at pH 6.2-6.3 to approximately 2.8 H(+)/COX at pH 8.0-8.5. Anaerobic oxidation of the four metal centers by ferricyanide resulted in the net release of 1.3-1.6 H(+)/COX in the pH range 6.2-8.2, which were taken up by the enzyme on rereduction of the metal centers. The proton transfer elicited by ferricyanide represents the net result of deprotonation/protonation reactions linked to anaerobic oxidoreduction of the metal centers. Correction for the ferricyanide-induced pH changes of the proton uptake observed in the oxidation and rereduction phase of the reaction of the reduced oxidase with oxygen gave a measure of the proton consumption in the reduction of O(2) to 2H(2)O. The results show that the expected stoichiometric proton consumption of 4H(+) in the reduction of O(2) to 2H(2)O is differently associated, depending on the actual pH, with the oxidation and reduction phase of COX. Two H(+)/COX are initially taken up in the reduction of O(2) to two OH(-) groups bound to the binuclear Fe a(3)-Cu(B) center. At acidic pHs the third and fourth protons are also taken up in the oxidative phase with formation of 2H(2)O. At alkaline pHs the third and fourth protons are taken up with formation of 2H(2)O only upon rereduction of COX.  相似文献   

3.
In Arabidopsis thaliana cells, hypoosmotic treatment initially stimulates Ca2+ influx and inhibits its efflux and, concurrently, promotes a large H2O2 accumulation in the external medium, representative of reactive oxygen species (ROS) production. After the first 10-15 min, Ca2+ influx rate is, however, lowered, and a large rise in Ca2+ efflux, concomitant with a rapid decline in H2O2 level, takes place. The drop of the H2O2 peak, as well as the efflux of Ca2+, are prevented by treatment with submicromolar concentrations of eosin yellow (EY), selectively inhibiting the Ca2+-ATPase of the plasma membrane (PM). Comparable changes of Ca2+ fluxes are also induced by hyperosmotic treatment. However, in this case, the H2O2 level does not rise, but declines below control levels when Ca2+ efflux is activated. Also K+ and H+ net fluxes across the PM and cytoplasmic pH (pH(cyt)) are very differently influenced by the two opposite stresses: strongly decreased by hypoosmotic stress and increased under hyperosmotic treatment. The H2O2 accumulation kinetics, followed as a function of the pH(cyt) changes imposed by modulation of the PM H+-ATPase activity or weak acid treatment, show a close correlation between pH(cyt) and H2O2 formed, a larger amount being produced for changes towards acidic pH values. Overall, these results confirm a relevant role for the PM Ca2+-ATPase in switching off the signal triggering ROS production, and propose a role for the PM H+-ATPase in modulating the development of the oxidative wave through the pH(cyt) changes following the changes of its activity induced by stress conditions.  相似文献   

4.
Veratric acids 14C-labelled in carboxyl group, 3-OCH3, 4-OCH3, or aromatic ring together with unlabelled veratric acid were supplemented in the cultures of the white-rot fungus Phlebia radiata. The effect of various carbon sources on the release of 14CO2 was studied. Veratric acid was readily decarboxylated, maximally already on day 1 from the addition of [14COOH]-veratric acid. High amounts (4%) of glucose slightly repressed the decarboxylation. In medium supplemented with cellulose the methoxyl group in position 4 was much more readily mineralized to CO2 than the group in position 3. The maximum evolution was achieved on day 5, two days from the addition. Cellulose did not repress methanol oxidation but repression of methanol oxidation by glucose was detected in media supplemented with [O14CH3]-veratric acids and 14CH3OH. However, glucose did not repress oxidation of H14CHO. The apparent uptake of 14C by fungal mycelium, especially from methoxyl groups, but also from the aromatic ring, may partially be due to the strong slime formation observed in cellobiose medium. Also in cellobiose medium apparent uptake of 14C from 14C-labelled methoxyl groups was observed.  相似文献   

5.
6.
Several factors for the hydrogen peroxide (H(2)O(2))-induced PLD stimulation have been proposed, including protein kinase C (PKC), tyrosine kinase, mitogen-activated protein kinase and Ca(2+), but their precise roles remain to be defined. As for involvement of PKC, there has been some discrepancy. Our previous study has demonstrated that phospholipase D (PLD) activity was increased by exposure of PC12 cells to 0.5mM H(2)O(2) in modified Krebs-Ringer buffer (KRB) and suggested that the PLD activation was independent of PKC activity. However, we have shown here that the H(2)O(2)-induced PLD stimulation was much greatly enhanced by incubation in Dulbecco's modified Eagle's medium (DMEM) and further that it was PKC-dependent. These results indicated that the markedly enhanced PLD activation and its PKC dependence were modulated by pH changes during incubation in DMEM. Furthermore, evidence has been presented for possible involvement of alkaline phosphatase in this pH-dependent profile of PLD activation by H(2)O(2).  相似文献   

7.
S Hallén  T Nilsson 《Biochemistry》1992,31(47):11853-11859
The pH dependence of proton uptake and electron transfers during the reaction between fully reduced cytochrome c oxidase and oxygen has been studied using the flow-flash method. Proton uptake was monitored using different pH indicators. We have also investigated the effect of D2O on the electron-transfer reactions. Proton uptake was biphasic throughout the pH range studied (6.3-9.3), and the decrease of the observed rate constants at increasing pH could be described by titration curves with pKa values of 8-8.5. Of the four phases resolved in the redox reaction, the rate constants for the first two were independent of pH, whereas that of the third decreased at increasing pH with a pKa of 7.9. All phases except the first were slower in D2O than in H2O. The values obtained for kH/kD were 1.0 for the first phase, 1.4 for the second and third phases, and 2.5 for the fourth phase. We suggest from these results that the fast phase of proton uptake is initiated by the second phase of the redox reaction and that this step includes a partially rate-limiting internal proton transfer. The third and fourth phases of the redox reaction are suggested to be rate limited by proton uptake from the medium. The pH dependencies of the proton uptake reactions are consistent with the participation of a titrable group in the protein in proton transfer from the medium to the oxygen-binding site.  相似文献   

8.
1. To gain insight into a putative role for mitochondria in silicon metabolism, mitochondrial uptake (by which it is meant the removal from the medium) of silicic acid [Si(OH)4] was studied under conditions minimizing SI(OH)4 polymerization. 2. Measurements of mitochondrial respiration and swelling indicated indirectly a significant uptake of Si(OH)4 as a weak acid, but this was not confirmed when 31Si(OH)4 was used as a tracer. 31Si(OH)4 occupied a mitochondrial volume similar to that of 3H2O and was relatively unaffected by mitochondrial energy status and by the pH gradient across the mitochondrial inner membrane. 3. Uptake was directly proportional to Si(OH)4 concentration in the range 0-3 mM. 4. The uptake consisted of two components: under all conditions examined, the greater quantity, amounting to 1-2nmol of Si(OH)4/mg of mitochondrial protein, was bound, a major portion of it external to the inner membrane, with the lesser quantity free within the matrix space. 5. Equilibration of 31Si(OH)4 between medium and matrix was a slow process, having a half-time of approx. 10 min at 22 degrees C. 6. Mersalyl and N-ethylmaleimide inhibited the uptake by preferentially lowering the amount of Si(OH)4 bound. Their action was somewhat variable, depending on the precise nature of the suspending medium, and suggesting that the bound material may represent polymerized forms of Si(OH)4. 7. It is concluded that Si(OH)4 may penetrate the mitochondrial inner membrane by a simple diffusion mechanism.  相似文献   

9.
An increase in oxygen tension is an important factor in decreasing pulmonary vascular resistance (PVR) at birth. Birth asphyxia results in acidosis and increased PVR. We determined the effect of resuscitation with 21 vs. 100% O(2) on pulmonary hemodynamics, pulmonary arterial (PA) reactivity, and oxidant stress in a lamb model of in utero asphyxia. Term fetal lambs were acutely asphyxiated by intrauterine umbilical cord occlusion for 10 min resulting in acidosis (pH 6.96 ± 0.05 and Pco(2) 103 ± 5 Torr), bradycardia, systemic hypotension, and increased PVR. Lambs were treated with 30 min of resuscitation with 21% or 100% O(2) (n = 6 each). Pa(O(2)) was significantly elevated with 100% O(2) resuscitation compared with 21% O(2) (430 ± 38 vs. 64 ± 8 Torr), but changes in pH and Pa(CO(2)) were similar. The 100% O(2) induced greater increase in pulmonary blood flow and decrease in PVR at 1 min of life, but subsequent values were similar to 21% O(2) group between 2 and 30 min of life. Oxygen uptake from the lung and systemic oxygen extraction was similar between the two groups. Pulmonary arteries showed increased staining for superoxide anions and increased contractility to norepinephrine following resuscitation with 100% O(2). The increased PA contractility induced by 100% O(2) was reversed by scavenging superoxide anions with superoxide dismutase and catalase. We conclude that resuscitation of asphyxiated lambs with 100% O(2) increases Pa(O(2)) but does not improve lung oxygen uptake, decrease PVR at 30 min, or increase systemic oxygen extraction ratios. Furthermore, 100% O(2) also induces oxidative stress and increases PA contractility. These findings support the new neonatal resuscitation guidelines recommending 21% O(2) for initial resuscitation of asphyxiated neonates.  相似文献   

10.
1. Both the maximum rate of phosphate uptake and the Km depend upon the pH of the medium in a complex way. 2. The effect of medium pH upon the maximum rate of uptake is mainly indirect and is correlated with changes in cell pH. 3. The Km is affected by the medium pH both directly via an apparent competitive inhibition by hydroxyl anions and indirectly in a similar way as the maximum rate of uptake.  相似文献   

11.
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Earlier work in this laboratory has indicated that a cellular binding protein for 24,25(OH)2D3 is the enzyme catalase. Since binding resulted in decreased catalase activity and increased H2O2 production, studies were undertaken to determine if pro-oxidant conditions mimicked the inhibitory actions of 24,25(OH)2D3, and anti-oxidant conditions prevented the inhibitory actions of 24,25(OH)2D3. An antibody against the 24,25(OH)2D3 binding protein was found to neutralize the inhibitory effect of the steroid on 1,25(OH)2D3-mediated 32P uptake. Incubation of cells in the presence of 50 nM catalase was also found to alleviate inhibition. In another series of experiments, isolated intestinal epithelial cells were incubated as controls or with 1,25(OH)2D3, each in the presence of the catalase inhibitor 3-amino-1,2,4-triazole, or with 1,25(OH)2D3 alone. Cells exposed to hormone alone again showed an increased accumulation of 32P, while cells treated with catalase inhibitor and hormone had uptake levels that were indistinguishable from controls. We tested whether inactivation of protein kinase C (PKC), the signaling pathway for 32P uptake, occurred. Incubation of cells with phorbol-13-myristate (PMA) increased 32P uptake, while cells pretreated with 50 microM H2O2 prior to PMA did not exhibit increased uptake. Likewise, PMA significantly increased PKC activity while cells exposed to H2O2 prior to PMA did not. It is concluded that catalase has a central role in mediating rapid responses to steroid hormones.  相似文献   

12.
The interactions of cis-di-sulfonated aluminum phthalocyanine (PcS(2)Al) with dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles have been investigated by fluorescence spectroscopy. At pH 7.0, PcS(2)Al incorporates into the vesicles with a high affinity constant (2.7x10(6) M(-1), in terms of phospholipid concentration). The fluorescence changes following rapid mixing of PcS(2)Al with vesicles are biphasic. The first phase is attributed to the entry of PcS(2)Al into the vesicles, as deduced from the linear dependence of the rate upon lipid concentration. More surprisingly, this rate is strongly pH dependent with a marked maximum around pH 7.3, a result interpreted in terms of the coordination state of the aluminum ion in aqueous solutions. At this pH, a hydroxide ion neutralizes the residual positive charge of the metal ion that remains unbalanced after coordination by the phthalocyanine cycle. A water molecule is likely to complete the metal coordination sphere. Only this form, PcAl(+)(OH(-))(OH(2)), with an uncharged core is quickly incorporated into the vesicles. The protonation of OH(-) or the deprotonation of the coordinated H(2)O leading to a positively or negatively charged core, respectively, account for the observed pH effect. Studies on the effect of cholesterol addition and exchange of PcS(2)Al between vesicles and albumin all indicate the absence of transfer of the phthalocyanine between the vesicle hemileaflets, a result expected from the presence of the two negatively charged sulfonated groups at the ring periphery. Instead, the slower kinetic phase is likely due to the movement of the phthalocyanine becoming more buried within the outer leaflet upon the loss of the water molecule coordinated to the aluminum ion.  相似文献   

13.
The mechanism of pH-dependent hydrogen peroxide cytotoxicity in vitro   总被引:1,自引:0,他引:1  
The present paper is concerned with the influence of hydrogen ion concentration and composition of the medium on clonogenic survival of epithelial cells exposed to hydrogen peroxide in vitro. The survival of cells incubated with H2O2 in phosphate-buffered saline at pH 6.5 was 1 x 10(-2) and increased abruptly to 9 x 10(-2) at pH 7.0. The pH dependence of the cytocidal effect was particularly conspicuous when Eagle's minimum essential medium (SFMEM) was used for cell exposure to H2O2: the survival was characterized by exponential pH dependence and varied from 1 x 10(-1) to 9 x 10(-1) for pH 6.5 and 7.5, respectively, with a superimposed sharp peak value of 9 x 10(-1) at pH 7.0. The enhanced pH dependence of the H2O2 cytotoxicity in SFMEM was found to result from the additive action of glucose and histidine present in this medium. Glucose alone protected the cells with the efficiency decreasing with increasing hydrogen ion concentration. Histidine was responsible for the intermediate maximum in the pH-dependent survival spectrum. In addition, the changes in cell survival were accompanied by pH-dependent release of GSSG from the exposed cells. The GSSG efflux was inhibited by glucose in the medium. The influence of glucose on both the pattern of cell survival and the associated GSSG release indicate that the glutathione peroxidase activity supported by the pentose phosphate pathway is crucial in cell protection against extracellular H2O2 toxicity.  相似文献   

14.
Yamazaki S  Morioka C  Itoh S 《Biochemistry》2004,43(36):11546-11553
Tyrosinase is a copper monooxygenase containing a coupled dinuclear copper active site (type-3 copper), which catalyzes oxygenation of phenols (phenolase activity) as well as dehydrogenation of catechols (catecholase activity) using O(2) as the oxidant. In this study, catalase activity (conversion of H(2)O(2) to (1/2)O(2) and H(2)O) and peroxygenase activity (H(2)O(2)-dependent oxygenation of substrates) of mushroom tyrosinase have been examined kinetically by using amperometric O(2) and H(2)O(2) sensors. The catalase activity has been examined by monitoring the initial rate of O(2) production from H(2)O(2) in the presence of a catalytic amount of tyrosinase in 0.1 M phosphate buffer (pH 7.0) at 25 degrees C under initially anaerobic conditions. It has been found that the catalase activity of mushroom tyrosinase is three-order of magnitude greater than that of mollusk hemocyanin. The higher catalase activity of tyrosinase could be attributed to easier accessibility of H(2)O(2) to the dinuclear copper site of tyrosinase. Mushroom tyrosinase has also been demonstrated for the first time to catalyze oxygenation reaction of phenols with H(2)O(2) (peroxygenase activity). The reaction has been investigated kinetically by monitoring the H(2)O(2) consumption rate in 0.5 M borate buffer (pH 7.0) under aerobic conditions. Similarity of the substituent effects of a series of p-substituted phenols in the peroxygenase reaction with H(2)O(2) to those in the phenolase reaction with O(2) as well as the absence of kinetic deuterium isotope effect with a perdeuterated substrate (p-Cl-C(6)D(4)OH vs p-Cl-C(6)H(4)OH) clearly demonstrated that the oxygenation mechanisms of phenols in both systems are the same, that is, the electrophilic aromatic substitution reaction by a (micro-eta(2):eta(2)-peroxo)dicopper(II) intermediate of oxy-tyrosinase.  相似文献   

15.
Carbon uptake in the green macroalga Cladophora glomerata (L.) Kütz. from the brackish Baltic Sea was studied by recording changes in pH, alkalinity, and inorganic carbon concentration of the seawater medium during photosynthesis. The use of specific inhibitors identified three uptake mechanisms: 1) dehydration of HCO3 ? into CO2 by periplasmic carbonic anhydrase, followed by diffusion of CO2 into the cell; 2) direct uptake of HCO3 ? via a 4,4′‐diisothiocyanato‐stilbene‐2,2′‐disulfonate‐sensitive mechanism; and 3) uptake of inorganic carbon by the involvement of a vanadate‐sensitive P‐type H + ‐ATPase (proton pump). A decrease in the alkalinity of the seawater medium during carbon uptake, except when treated with vanadate, indicated a net uptake of the ionic species contributing to alkalinity (i.e. HCO3 ? , CO32 ? , and OH ? ) from the medium, where OH ? influx is equivalent to H + efflux. This would suggest that the proton pump is involved in HCO3 ? transport. We also show that the proton pump can be induced by carbon limitation. The inducibility of carbon uptake in C. glomerata may partly explain why this species is so successful in the upper littoral zone of the Baltic Sea. Usually, carbon limitation is not a problem in the upper littoral of the sea. However, it may occur frequently within dense Cladophora belts with high photosynthetic rates that create high pH and low carbon concentrations in the alga's microenvironment.  相似文献   

16.
Selectivity of catechol O-methyltransferase has been examined for the three ring-fluorinated norepinephrines to elucidate the role of acidity of the phenolic groups in their methylation. Substitution of fluorine at the 5-position of norepinephrine reverses the selectivity of catechol O-methyltransferase so that p-O-methylation predominates. The 5-fluoro substituent also causes the pKa of the p-hydroxyl group to decrease substantially. In contrast, 2- and 6-fluoronorepinephrines are methylated predominantly at the m-hydroxyl group. These results suggest that acidity of a phenolic group can play an important role in its ability to be methylated by catechol O-methyltransferase. Percentages of p-O-methylation of norepinephrine and its fluorinated derivatives increase with pH. This relative increase in p-O-methylation appears to accompany ionization of a group with pKa of 8.6, 7.7, 7.9, and 8.4 for norepinephrine and its 2-, 5-, and 6-fluoro derivative, respectively. These pKa values are the same as or similar to the pKa values of a phenolic hydroxyl group of these substrates. 3,4-Dihydroxybenzyl alcohol and its 5-fluoro derivative are O-methylated by catechol O-methyltransferase to form p- and m-O-methyl products in approximately 1:1 and 4:1 ratios, respectively, at all pH values. Based on the above results, a catechol-binding site model for catechol O-methyltransferase is proposed in which the two phenolic hydroxyl groups of catechol substrates are postulated to be approximately equally spaced from the methyl group of the cosubstrate S-adenosylmethionine.  相似文献   

17.
We examined hydroxyl free radical (.OH) production in the mixture of H2O2 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) without exposure to light using the electron spin resonance spin-trapping technique. When the mixtures were protected from exposure to light, .OH was formed at pH 6.5 and above; it was not formed at pH 5.0 and below, consistent with our previous report. The amount of .OH trapped depended on the concentrations of MNNG and H2O2 and the pH. Nitrite ion was also detected colorimetrically at pH 6.5 and above, but not detected at pH 5.0 and below in the mixtures without exposure to light. Moreover, its production depended on the concentrations of MNNG and H2O2 and the pH. The formation of N-methyl-N'-nitroguanidine in the mixture at pH 7.8 was confirmed by thin-layer chromatography and melting point. These results suggest that nucleophilic attack by H2O2 on the nitroso nitrogen of MNNG results in the formation of N-methyl-N'-nitroguanidine and peroxynitrous acid, which degrades homolytically to yield .OH and nitrogen dioxide, resulting in the production of nitrite ion, at pH 6.5 and above without exposure to light.  相似文献   

18.
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.  相似文献   

19.
The photoreduction of ubiquinone in the electron acceptor complex (QIQII) of photosynthetic reaction centers from Rhodopseudomonas sphaeroides, R26, was studied in a series of short, saturating flashes. The specific involvement of H+ in the reduction was revealed by the pH dependence of the electron transfer events and by net H+ binding during the formation of ubiquinol, which requires two turnovers of the photochemical act. On the first flash QII receives an electron via QI to form a stable ubisemiquinone anion (QII-); the second flash generates QI-. At low pH the two semiquinones rapidly disproportionate with the uptake of 2 H+, to produce QIIH2. This yields out-of-phase binary oscillations for the formation of anionic semiquinone and for H+ uptake. Above pH 6 there is a progressive increase in H+ binding on the first flash and an equivalent decrease in binding on the second flash until, at about pH 9.5, the extent of H+ binding is the same on all flashes. The semiquinone oscillations, however, are undiminished up to pH 9. It is suggested that a non-chromophoric, acid-base group undergoes a pK shift in response to the appearance of the anionic semiquinone and that this group is the site of protonation on the first flash. The acid-base group, which may be in the reaction center protein, appears to be subsequently involved in the protonation events leading to fully reduced ubiquinol. The other proton in the two electron reduction of ubiquinone is always taken up on the second flash and is bound directly to QII-. At pH values above 8.0, it is rate limiting for the disproportionation and the kinetics, which are diffusion controlled, are properly responsive to the prevailing pH. Below pH 8, however, a further step in the reaction mechanism was shown to be rate limiting for both H+ binding electron transfer following the second flash.  相似文献   

20.
A latent form of 'Ferrooxidase' exhibiting ferrocyanide-dependent O2 uptake was detected in the isolated spinach chloroplasts. Presence of a cationic detergent hexadecyl trimethyl ammonium bromide (CTAB) in the medium was essential to induce this activity. The association of this enzyme activity with photosystem II (PSII) particles as well as the ability of PSII particles to show oxidation of H2O2 (catalase like activity) indicated its possible relationship with water oxidation system. The protein catalysing this activity was purified to homogeneity and its molecular mass was found to be 34 kDa. The purified protein showed a complete dependence on an electron acceptor, namely ferricyanide, for the oxidation of H2O2. While with ferrocyanide in the presence of CTAB, the protein exhibits the ferrooxidase activity. For both activities, a sharp pH optima at 6.1 was observed. The km for H2O2 was 12.2 mM. The purified enzyme protein contained 4 atoms of calcium and 2 atoms of iron per mole of the enzyme. Unlike catalase, the enzyme reaction was insensitive to sodium azide even at 500 microM concentration. The enzyme was found to be sensitive to metal chelators like ethylene-glycol-bis-(beta-aminoethylether) N, N+ tetra acetic acid (EGTA) (2mM), alpha,alpha-dipyridyl (500 microM) and 1,10-orthophenanthroline (200 microM). The sensitivity of the reaction to alpha,alpha-dipyridyl and 1,10-orthophenanthroline suggested the involvement of Fe2+ in the reaction. Inhibition of enzyme activity by EGTA and restoration of activity by supplementation of CaCl2 to the EGTA-dialysed sample confirmed the absolute requirement for calcium for this activity. Calcium was absent in the EGTA-dialysed enzyme. Apart from these inhibitors, NaF and NH2OH were potent inhibitors of the enzyme reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号