首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Incubation of rat liver mitochondria in the presence of either [32P] Pi or 32 y -P] ATP resulted in a phosphorylation of four proteins with Mr 50, 47, 44 and 36 kDa, respectively. The endogenous phosphorylation of these proteins in the presence of [32P] Pi was markedly influenced by the osmolarity of the incubation medium and differentially affected by various effectors of mitochondrial functions, such as Ca2+, oligomycin, FCCP, arsenite and dichloroacetate. In particular, the 36 kDa protein, unlike the other proteins, appears to be phosphorylated also by direct incorporation of [32P], independently of respiratory chain-linked ATP synthesis. The four proteins, located in the mitoplasts, seem to be phosphorylated by diiferent protein kinases, as suggested by the observation that the endogenous phosphorylation of 36 kDa protein resulted selectively increased by addition of exogenous protein kinases, such as casein kinases S and TS. A tentative identification of these phosphorylatable protein is discussed.  相似文献   

2.
Protein phosphorylation in vitro was investigated in guard cells from Vicia faba. A number of proteins with apparent molecular masses of 72, 67, 57, 52, 49, 44, 37, and 26 kDa were phosphorylated when guard-cell extract was incubated with [γ-32P]ATP under Ca2+-free conditions. In the presence of Ca2+ at 1 μM, several proteins with apparent molecular masses of 125, 83, 41, 31, and 25 kDa were newly phosphorylated. These Ca2+-dependent protein phosphorylations were suppressed by (8R*,9S*,11S*)-(−)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a- triazadibenzo[a,g]cycloocta[cde]trinden-1-one (K-252a), a wide-range inhibitor of protein kinases, suggesting that the protein phosphorylations were mediated by protein kinases. Several proteins were phosphorylated in vitro in mesophyll extract from Vicia. In contrast to guard cells, there was no detectable Ca2+-dependent protein phosphorylation in mesophyll cells. 1-(5-Indonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-7), an inhibitor of myosin light chain kinase (MLCK), and an antagonist of calmodulin (CaM), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), inhibited Ca2+-dependent phosphorylation of 41- and 25-kDa proteins in guard cells. Fractionation experiments revealed that the Ca2+-dependent phosphorylated proteins with molecular masses of 41 and 25 kDa were present in the mitochondria, and the 125- and 31-kDa proteins in the cytosol. These results suggest that Ca2+-dependent protein phosphorylation occurs markedly in guard cells, and that Ca2+-dependent phosphorylation of 41- and 25-kDa proteins may be catalyzed by MLCK or MLCK-like protein kinase in guard cells.  相似文献   

3.
Protein kinase activity was detected in osmotically lysed mitochondria isolated from etiolated seedlings of corn, pea, soybean, and wheat, as well as from potato tubers. Ther kinase(s) phosphorylated both endogenous polypeptides and exogenous, nonmitochondrial proteins when supplied with ATP and Mg2+. Eight to fifteen endogenous mitochondrial polypeptides were phosphorylated. The major mitochondrial polypeptide labeled in all species migrated during denaturing electrophoresis with an apparent monomeric molecular weight of 47,000. Incorporation of phosphate into endogenous proteins appeared to be biphasic, being most rapid during the first 1 to 2 minutes but slower thereafter. The kinase activity was greatest at neutral and alkaline pH values and utilized ATP with a Km of approximately 200 micromolar. The kinase was markedly inhibited by CaCl2 but was essentially unaffected by NaF, calmodulin, oligomycin, or cAMP. These data suggest that plant mitochondrial protein phosphorylation may be similar to protein phosphorylation in animal mitochondria.  相似文献   

4.
Synaptosomal proteins isolated from rat cerebral cortex were phosphorylated endogeneously in the presence of [γ-32P]ATP. The phosphorylated proteins were found to be membrane bound by differential and density gradient centrifugation. In contrast to the phosphorylation of all synaptosomal proteins, phosphorylation of one protein (C), 41 000–43 000 daltons, was inhibited by Mg2+ and stimulated by Ca2+. In addition, the ionophores X537A and A23187, as well as papaverine, selectively enhanced phosphorylation of protein C without affecting phosphorylation of the other proteins. Cyclic AMP did not influence the phosphorylation of protein C but markedly affected the phosphorylation of other synaptosomal proteins. It appears that the phosphorylation of protein C is stimulated by agents which trigger the release of neurotransmitters (Ca2+, X537A, A23187 and papaverine), and is inhibited by Mg2+, which inhibits release. It is proposed that the phosphorylation of protein C is related to membranal events underlying the release of neurotransmitters.  相似文献   

5.
Encystment induction of Colpoda cucullus is promoted by an increase in external Ca2+ and overpopulation of Colpoda vegetative cells. Using phos-tag detection assays, the present study revealed that the in vivo phosphorylation level in several proteins [33 kDa, 37 kDa, 37.5 kDa, 43 kDa, 47 kDa, 49 kDa, etc.] was raised when the vegetative cells were stimulated by overpopulation to encyst in a medium containing 0.1 mM Ca2+ or without the addition of Ca2+. Both overpopulation-mediated encystment induction and protein phosphorylation were suppressed by the addition of EGTA. Ca2+/overpopulation-stimulated encystment induction and protein phosphorylation were also suppressed by the addition of BAPTA-AM. These results suggest that the Ca2+ inflow promoted by cell-to-cell stimulation due to overpopulation may activate signaling pathways involving protein phosphorylation and encystment induction. In the presence of cAMP-AM, the phosphorylation levels of 33 kDa, 37 kDa, 37.5 kDa, 43 kDa, 47 kDa and 49 kDa proteins were enhanced, and encystment induction was promoted. Enzyme immunoassays (EIAs) showed that intracellular cAMP concentration was raised prior to encystment when the cells were stimulated by overpopulation. These results suggest that cAMP/PKA-dependent protein phosphorylation, which is an event on Ca2+-triggered signaling pathways, may be involved in encystment induction.  相似文献   

6.
Microsomal membranes isolated from barley roots (Hordeum vulgare L. cv. CM72) contained endogenous protein phosphorylation activities that were greatly enhanced by Mn2+. Mg2+ions also stimulated protein phosphorylation, but to a lesser extent than Mn2+. Ca2+ enhanced Mg2+, but not Mn2+-dependent phosphorylation. It is proposed that this strong enhancement by Mn2+ may be due to a greater affinity of Mn2+ than either Ca2+ or Mg2+ for both the Ca2+ and Mg2+ binding sites of certain kinases. Some Mn2+ stimulated kinase activity was eliminated from the membrane by washing with 0.2 mol/L KCl. The KCl extract contained histone and casein kinase activities, and 4 major phosphoproteins that were phosphorylated on serine and threonine residues. Phosphorylation of a 52 kDa polypeptide corresponded with the characteristics of the histone kinase activity and may represent the autophosphorylation of a CDPK-type kinase. Phosphorylation of a 36 kDa polypeptide was Ca2+ stimulated and may represent the autophosphorylation of a different type of unknown kinase. Polypeptides of 18 and 15 kDa had characteristics that suggest they were autophosphorylating subunits of a membrane bound nucleotide di-phosphokinase.  相似文献   

7.
When highly purified myelin from rat sciatic nerve was incubated with [γ-32P]ATP, protein components of the membrane were phosphorylated indicating the presence of both the substrate (receptor protein) and an endogenous kinase in the membrane. Polyacrylamide gel electrophoresis of the phosphorylated membrane proteins followed by scintillation counting of gel slices and autoradiography showed that the polypeptides of molecular weights 28000, 23000 and 19000 were phosphorylated, and 32P from [γ-32P]ATP having been incorporated into serine residues of the substrate proteins. Phosphorylation of purified myelin was Mg2+-dependent, was optimal at pH 6.5 and was not stimulated by adenosine 3′,5′-monophosphate. We found that proteins other than those in myelin, such as phosvitin, casein, protamine and histones, can also act as a substrate for the membrane associated kinase. Muscle protein kinase inhibitor had no effect on the endogenous phosphorylation of myelin proteins or on the phosphorylation of phosvitin by peripheral nerve myelin protein kinase. However, the phosphorylation of histone by peripheral nerve myelin protein kinase was inhibited by the protein kinase inhibitor. After washing the membrane with 150 mM KCl the protein kinase that utilizes histone as substrate was found in the supernatant. In contrast, the endogenous phosphorylation of membrane proteins or the phosphorylation of phosvitin by the membrane associated kinase was not affected by washing.From these findings we conclude that at least two protein kinase systems exist in purified peripheral nerve myelin. One system is not inhibited by muscle kinase inhibitor, is tightly bound to the membrane and utilizes as its receptor proteins either exogenous phosvitin or endogenous membrane proteins. The second system is inhibited by muscle kinase inhibitor, is removable from the membrane and utilizes histones as its receptor proteins.  相似文献   

8.
《FEBS letters》1985,181(1):103-108
Endogenous protein phosphorylation in cellular fractions from Rhodospirillum rubrum was manifested after exposure to [γ-32P]ATP. At least six phosphorylated protein bands of 90, 86, 64, 31, 13 and 11 kDa were found in the cell-free extract. Treatment of the 64-kDa band with V8 protease yielded smaller radioactive bands. Phosphoserine, phosphothreonine and phosphotyrosine were detected after acid hydrolysis of the phosphorylated fractions. Protein phosphorylation in all the fractions was insensitive to cAMP, did not recognize exogenous protein substrates and was rapidly reverted upon elimination of the excess of [γ-32P]ATP. The chlorophyll-anthena apoprotein from R. rubrum chromatophores overlapped the 13-kDa phosphorylated band during gel filtration by high-pressure liquid chromatography suggesting that it is one of the substrates of the protein kinase(s) of R. rubrum.  相似文献   

9.
Several plasma-membrane proteins from beet root (Beta vulgaris L.) have been functionally incorporated into reconstituted proteoliposomes. These showed H+-ATPase activity, measured both as ATP hydrolysis and H+ transport. The proton-transport specific activity was 10 times higher than in plasma membranes, and was greatly stimulated by potassium and valinomycin. These proteoliposomes also showed calcium-regulated protein kinase activity. This kinase activity is probably due to a calmodulin-like domain protein kinase (CDPK), since two protein bands were recognized by antibodies against soybean and Arabidopsis CDPK. This kinase phosphorylated histone and syntide-2 in a Ca2+-dependent manner. Among the plasma-membrane proteins phosphorylated by this kinase, was the H+-ATPase. When the H+-ATPase was either prephosphorylated or assayed in the presence of Ca2+, both the ATP-hydrolysis and the proton-transport activities were slower. This inhibition was reversed by an alkaline-phosphatase treatment. A trypsin treatment (that has been reported to remove the C-terminal autoinhibitory domain from the H+-ATPase) also reversed the inhibition caused by phosphorylation. These results indicate that a Ca2+-dependent phosphorylation, probably caused by a CDPK, inhibits the H+-ATPase activities. The substrate of this regulatory phosphorylation could be the H+-ATPase itself, or a different protein influencing the ATPase activities. Received: 1 May 1997 / Accepted: 25 June 1997  相似文献   

10.
The phosphorylation of at least five proteins with Mr of about 160,000; 93,000; 85,000; 45,000; and 29,000 respectively was demonstrated in crude extracts from the facultative chemolithotrophThiobacillus novellus. The incorporation of [-32P]phosphate from ATP into these proteins was dependent on the presence of magnesium ion. The phosphorylation reactions were found to be reversible and required 12.5 mM NaF for maximal activity, indicating the action of phosphatases. In addition, 3,5-cAMP had little effect on protein kinase activity, whereas Ca2+ alone was weakly stimulatory. This activation was enhanced by the addition of 3,5-cAMP. Ca2+ with calmodulin had a strong stimulatory effect on phosphate incorporation into the proteins. A highly purified preparation containing only the 160, 93, and 85 kDa proteins phosphorylated histone, whereas the uptake of32P by the three proteins was inhibited. Rabbit muscle phosphorylase b prevented incorporation of radiolabel only into the 160 and 93 kDa proteins.  相似文献   

11.
Protein phosphorylation was investigated inStreptomyces lincolnensis underin vivo conditions. In cells grown in the presence of32P-orthophosphate, proteins ofM=12, 22, 45, 68 and 90 kDa were labeled with32P (detected by gel electrophoresis and autoradiography). These proteins were shown to contain O-phosphoserine and a small proportion of O-phosphotyrosine. Taken together the results indicate thatStreptomyces lincolnensis harbors several protein kinases including a protein-tyrosine kinase activity.  相似文献   

12.
Protein phosphorylation was studied during fertilization of Urechis caupo oocytes both in vivo, by measuring [32P]phosphate incorporation into 32P preloaded oocytes and in vitro, by measuring endogenous protein kinase and phosphatase activities in homogenates. During fertilization (and maturation) the rate of protein phosphorylation is dramatically increased. No change in the [32P]phosphate uptake, or the nucleotide levels was observed at fertilization, so the increase cannot be attributed to changes in substrate availability. In vitro enzyme assays showed changes in protein kinase activity which approximately mirrored the changes in the in vivo phosphorylation pattern. As there were no changes in protein phosphatase activity, these results suggest the phosphorylation change results from an increase in protein kinase activity. The pattern of change, investigated by SDS-polyacrylamide gel electrophoresis, shows that proteins that were phosphorylated in the unfertilized egg become phosphorylated to a greater degree after fertilization. One protein (48 kd) undergoes an increase followed by a decrease of its phosphorylation level.  相似文献   

13.
A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration (Larrivee and Grafstein, 1989). (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To deterine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but32P labeling was reduced only by 50% or less. (3) When32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.Abbreviations SDS sodium lauryl sulfate - GAP growth associated protein - TCA trichloracetic acid - kD kilodalton  相似文献   

14.
Abstract: The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65–70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65–70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65–70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca2+-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65–70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca2+-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

15.
16.
《FEBS letters》1987,219(1):249-253
Ca2+-dependent chromatography of soluble cytosolic proteins on calmodulin-Sepharose gave a fraction that exhibited Ca2+- and calmodulin-dependent phosphorylation of several polypeptides, including 60, 56 and 45 kDa species. At 0.2 μM beef calmodulin the phosphorylation was optimal at 3 μM free Ca2+, and at 80 μM free Ca2+ it was half-maximal at about 0.1 μM beef calmodulin. It is concluded that the fraction contains calmodulin-dependent protein kinase(s) which is (are) autophosphorylated or associated with substrates.  相似文献   

17.
Canine cardiac sarcoplasmic reticulum is phosphorylated by cyclic AMP-dependent and by Ca2+-calmodulin-dependent protein kinases on a 22 kDa protein, called phospholamban. Both types of phosphorylation have been shown to stimulate the initial rates of Ca2+ transport. To establish the interrelationship of the cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation on Ca2+ transport, cardiac sarcoplasmic reticulum vesicles were preincubated under optimum conditions for: (a) cAMP-dependent phosphorylation, (b) Ca2+-calmodulin-dependent phosphorylation, and (c) combined cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation. Control vesicles were treated under identical conditions, but in the absence of ATP, to avoid phosphorylation. Control and phosphorylated sarcoplasmic reticulum vesicles were subsequently centrifuged and assayed for Ca2+ transport in the presence of 2.5 mM Tris-oxalate. Our results indicate that cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation can each stimulate calcium transport in an independent manner and when both are operating, they appear to have an additive effect. Stimulation of Ca2+ transport was associated with a statistically significant increase in the apparent affinity for calcium by each type of phosphorylation. The degree of stimulation of the calcium affinity was relatively proportional to the degree of phospholamban phosphorylation. These findings suggest the presence of a dual control system which may operate in independent and combined manners for regulating cardiac sarcoplasmic reticulum function.  相似文献   

18.
The effects of carbon tetrachloride, methylene chloride and chloroform on phosphorylation of PO was examined. The results of the dose response curve revealed that carbon tetrachloride (0.67%), methylene chloride (2%) and chloroform (1%) induced phosphorylation of PO by approximately 4, 6, and 12-fold, respectively. PO was found to be phosphorylated on the serine residue, and the phosphorylation of the serine residue was markedly increased when PO was phosphorylated in the presence of these compounds. Since tumor promoters, carbon tetrachloride and chloroform, have been shown to activate protein kinase C in platelets it is postulated that the increased phosphorylation of PO may result from the activation of myelin associated protein kinase C. The presence of phospholipid sensitive Ca2+-dependent protein kinase (protein kinase C) in purified nerve myelin was demonstrated by increased phosphorylation of PO in the presence of Ca2+ and phosphatidylserine.  相似文献   

19.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

20.
A comparative study was conducted on protein tyrosine phosphorylation events of capacitating sperm of two ruminant species, cattle and buffalo. Ejaculated cattle and buffalo bull spermatozoa were suspended separately in sp-TALP medium at 50 × 106 mL−1 and incubated at 38.5 °C with 5% CO2 in air in the absence or presence of heparin for a period of 6 h. The extent of sperm capacitation after various periods of incubations was assessed by lysophosphatidyl choline-induced acrosome reaction followed by a triple-staining technique and capacitation-associated tyrosine-phosphorylated proteins were detected by immunoblotting technique using a monoclonal antiphosphotyrosine antibody. In the same media, over a time-period, a significant increase in capacitation percentage was observed even in control group of buffalo spermatozoa as compared to a non-significant increase in that of cattle sperm. In both cattle and buffalo spermatozoa, at 6 h, four proteins of molecular weight 49, 45, 32, and 20 kDa (designated as p49, p45, p32, and p20) were tyrosine phosphorylated. However, in buffalo, two additional proteins of 38 and 30 kDa were also tyrosine phosphorylated. In a time-course study, p20 appeared as early as at 0 h in capacitated buffalo spermatozoa as compared to 4 h in cattle. Further, in heparin-treated buffalo spermatozoa, with a time-dependent increase in tyrosine phosphorylation of some proteins, there was time-dependent dephosphorylation of some other proteins that was never seen in heparin-treated cattle sperm. Thus, the present findings revealed that though buffalo sperm takes more time than cattle for capacitation but its associated protein tyrosine phosphorylation event starts very early as compared to cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号