首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
T Furuya  M M Lai 《Journal of virology》1993,67(12):7215-7222
The termini of viral genomic RNA and its complementary strand are important in the initiation of viral RNA replication, which probably involves both viral and cellular proteins. To detect the possible cellular proteins involved in the replication of mouse hepatitis virus RNA, we performed RNA-protein binding studies with RNAs representing both the 5' and 3' ends of the viral genomic RNA and the 3' end of the negative-strand complementary RNA. Gel-retardation assays showed that both the 5'-end-positive- and 3'-end-negative-strand RNA formed an RNA-protein complex with cellular proteins from the uninfected cells. UV cross-linking experiments further identified a 55-kDa protein bound to the 5' end of the positive-strand viral genomic RNA and two proteins 35 and 38 kDa in size bound to the 3' end of the negative-strand cRNA. The results of the competition assay confirmed the specificity of this RNA-protein binding. No proteins were found to bind to the 3' end of the viral genomic RNA under the same conditions. The binding site of the 55-kDa protein was mapped within the 56-nucleotide region from nucleotides 56 to 112 from the 5' end of the positive-strand RNA, and the 35- and 38-kDa proteins bound to the complementary region on the negative-strand RNA. The 38-kDa protein was detected only in DBT cells but was not detected in HeLa or COS cells, while the 35-kDa protein was found in all three cell types. The juxtaposition of the different cellular proteins on the complementary sites near the ends of the positive- and negative-strand RNAs suggests that these proteins may interact with each other and play a role in mouse hepatitis virus RNA replication.  相似文献   

2.
Poliovirus interactions with host cells were investigated by studying the formation of ribonucleoprotein complexes at the 3' end of poliovirus negative-strand RNA which are presumed to be involved in viral RNA synthesis. It was previously shown that two host cell proteins with molecular masses of 36 and 38 kDa bind to the 3' end of viral negative-strand RNA at approximately 3 to 4 h after infection. We tested the hypothesis that preexisting cellular proteins are modified during the course of infection and are subsequently recruited to play a role in viral replication. It was demonstrated that the 38-kDa protein, either directly or indirectly, is the product of processing by poliovirus 3CD/3C proteinase. Only the modified 38-kDa protein, not its precursor protein, has a high affinity for binding to the 3' end of viral negative-strand RNA. This modification depends on proteolytically active proteinase, and a direct correlation between the levels of 3CD proteinase and the 38-kDa protein was demonstrated in infected tissue culture cells. The nucleotide (nt) 5-10 region (positive-strand numbers) of poliovirus negative-strand RNA is important for binding of the 38-kDa protein. Deletion of the nt 5-10 region in full-length, positive-strand RNA renders the RNA noninfectious in transfection experiments. These results suggest that poliovirus 3CD/3C proteinase processes a cellular protein which then plays an essential role during the viral life cycle.  相似文献   

3.
The first 83 3' nucleotides of the genome RNA of the flavivirus West Nile encephalitis virus (WNV) form a stable stem-loop (SL) structure which is followed in the genome by a smaller SL. These 3' structures are highly conserved among divergent flaviviruses, suggesting that they may function as cis-acting signals for RNA replication and as such might specifically bind to cellular or viral proteins. Cellular proteins from uninfected and WNV-infected BHK-21 S100 cytoplasmic extracts formed three distinct complexes with the WNV plus-strand 3' SL [(+)3'SL] RNA in a gel mobility shift assay. Subsequent competitor gel shift analyses showed that two of these RNA-protein complexes, complexes 1 and 2, contained cell proteins that specifically bound to the WNV (+)3'SL RNA. UV-induced cross-linking and Northwestern blotting analyses detected WNV (+)3'SL RNA-binding proteins of 56, 84, and 105 kDa. When the S100 cytoplasmic extracts were partially purified by ion-exchange chromatography, a complex that comigrated with complex 1 was detected in fraction 19, while a complex that comigrated with complex 2 was detected in fraction 17. UV-induced cross-linking experiments indicated that an 84-kDa cell protein in fraction 17 and a 105-kDa protein in fraction 19 bound specifically to the WNV (+)3'SL RNA. In addition to binding to the (+)3'SL RNA, the 105-kDa protein bound to the SL structure located at the 3' end of the WNV minus-strand RNA. Initial mapping studies indicated that the 84- and 105-kDa proteins bind to different regions of the (+)3'SL RNA. The 3'-terminal SL RNA of another flavivirus, dengue virus type 3, specifically competed with the WNV (+)3'SL RNA in gel shift assays, suggesting that the host proteins identified in this study are flavivirus specific.  相似文献   

4.
The 3' end of Sindbis virus minus-sense RNA was tested for its ability to bind proteins in mosquito cell extracts, using labeled riboprobes that represented different parts of this region. We found four domains in the first 250 nucleotides that could bind the same 50- and 52-kDa proteins, three with high affinity and one with low affinity, whereas tested domains outside this region did not bind these proteins. The first binding domain was found in the first 60 nucleotides, which represents the complement of the 5'-nontranslated region, the second in the next 60 nucleotides, the third in the following 60 nucleotides, and the fourth between nucleotides 194 and 249 (all numbering is 3' to 5'). The relative binding constants, Kr, of the first, second, and fourth sites were similar, whereas that of domain 2 was fivefold less. Deletion mapping of the first domain showed that the first 10 nucleotides were critical for binding. Deletion of nucleotides 2 to 4, deletion or replacement of nucleotide 5, or deletion of the first 15 nucleotides was deleterious for binding, deletion of nucleotides 10 to 15, 26 to 40, or 41 to 55 had little effect on the binding, and deletion of nucleotides 15 to to 25 increased the binding affinity. We also found that the corresponding riboprobes derived from two other alphaviruses, Ross River virus and Semliki Forest virus, and from rubella virus were also able to interact with the 50- and 52-kDa proteins. The Kr value for the Semliki Forest virus probe was similar to that for the Sindbis virus probe, while that for the Ross River virus probe was four times greater. The rubella virus probe was bound only weakly, consistent with the fact that mosquito cells are not permissive for rubella virus replication. We suggest that the binding of the 50- and 52-kDa proteins to the 3' end of alphavirus minus-sense RNA represents an important step in the initiation of RNA replication.  相似文献   

5.
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.  相似文献   

6.
The hepatitis C virus (HCV)-encoded protease/helicase NS3 is likely to be involved in viral RNA replication. We have expressed and purified recombinant NS3 (protease and helicase domains) and Delta pNS3 (helicase domain only) and examined their abilities to interact with the 3'-terminal sequence of both positive and negative strands of HCV RNA. These regions of RNA were chosen because initiation of RNA synthesis is likely to occur at or near the 3' untranslated region (UTR). The results presented here demonstrate that NS3 (and Delta pNS3) interacts efficiently and specifically with the 3'-terminal sequences of both positive- and negative-strand RNA but not with the corresponding complementary 5'-terminal RNA sequences. The interaction of NS3 with the 3'-terminal negative strand [called 3'(-) UTR(127)] was specific in that only homologous (and not heterologous) RNA competed efficiently in the binding reaction. A predicted stem-loop structure present at the 3' terminus (nucleotides 5 to 20 from the 3' end) of the negative-strand RNA appears to be important for NS3 binding to the negative-strand UTR. Deletion of the stem-loop structure almost totally impaired NS3 (and Delta pNS3) binding. Additional mutagenesis showed that three G-C pairs within the stem were critical for helicase-RNA interaction. The data presented here also suggested that both a double-stranded structure and the 3'-proximal guanosine residues in the stem were important determinants of protein binding. In contrast to the relatively stringent requirement for 3'(-) UTR binding, specific interaction of NS3 (or Delta pNS3) with the 3'-terminal sequences of the positive-strand RNA [3'(+) UTR] appears to require the entire 3'(+) UTR of HCV. Deletion of either the 98-nucleotide 3'-terminal conserved region or the 5' half sequence containing the variable region and the poly(U) and/or poly(UC) stretch significantly impaired RNA-protein interaction. The implication of NS3 binding to the 3'-terminal sequences of viral positive- and negative-strand RNA in viral replication is discussed.  相似文献   

7.
Smith RM  Walton CM  Wu CH  Wu GY 《Journal of virology》2002,76(19):9563-9574
The 3'-terminal sequences of hepatitis C virus (HCV) positive- and negative-strand RNAs contribute cis-acting functions essential for viral replication. The secondary structure and protein-binding properties of these highly conserved regions are of interest not only for the further elucidation of HCV molecular biology, but also for the design of antisense therapeutic constructs. The RNA structure of the positive-strand 3' untranslated region has been shown previously to influence binding by various host and viral proteins and is thus thought to promote HCV RNA synthesis and genome stability. Recent studies have attributed analogous functions to the negative-strand 3' terminus. We evaluated the HCV negative-strand secondary structure by enzymatic probing with single-strand-specific RNases and thermodynamic modeling of RNA folding. The accessibility of both 3'-terminal sequences to hybridization by antisense constructs was evaluated by RNase H cleavage mapping in the presence of combinatorial oligodeoxynucleotide libraries. The mapping results facilitated identification of antisense oligodeoxynucleotides and a 10-23 deoxyribozyme active against the positive-strand 3'-X region RNA in vitro.  相似文献   

8.
The initial step in mouse hepatitis virus (MHV) RNA replication is the synthesis of negative-strand RNA from a positive-strand genomic RNA template. Our approach to begin studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the proteins which recognize these signals at the 3' end of genomic RNA of MHV. To determine whether host cellular and/or viral proteins interact with the 3' end of the coronavirus genome, an RNase T1 protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from mock- and MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. We demonstrated the specific binding of host cell proteins to multiple sites within the 3' end of MHV-JHM genomic RNA. By using a set of RNA probes with deletions at either the 5' or 3' end or both ends, two distinct binding sites were located. The first protein-binding element was mapped in the 3'-most 42 nucleotides of the genomic RNA [3' (+42) RNA], and the second element was mapped within an 86-nucleotide sequence encompassing nucleotides 171 to 85 from the 3' end of the genome (171-85 RNA). A single potential stem-loop structure is predicted for the 3' (+)42 RNA, and two stem-loop structures are predicted for the 171-85 RNA. Proteins interacting with these two elements were identified by UV-induced covalent cross-linking to labeled RNAs followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The RNA-protein complex formed with the 3'-most 42 nucleotides contains approximately five host polypeptides, a highly labeled protein of 120 kDa and four minor species with sizes of 103, 81, 70, and 55 kDa. The second protein-binding element, contained within a probe representing nucleotides 487 to 85 from the 3' end of the genome, also appears to bind five host polypeptides, 142, 120, 100, 55, and 33 kDa in size, with the 120-kDa protein being the most abundant. The RNA-protein complexes observed with MHV-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were identical to those observed with uninfected cells. The possible involvement of the interaction of host proteins with the viral genome during MHV replication is discussed.  相似文献   

9.
We previously identified a highly conserved 98-nucleotide (nt) sequence, the 3'X, as the extreme 3'-terminal structure of the hepatitis C virus (HCV) genome (T. Tanaka, N. Kato, M.-J. Cho, and K. Shimotohno, Biochem. Biophys. Res. Commun. 215:744-749, 1995). Since the 3' end of positive-strand viral RNA is the initiation site of RNA replication, the 3'X should contribute to HCV negative-strand RNA synthesis. Cellular factors may also be involved in this replication mechanism, since several cellular proteins have been shown to interact with the 3'-end regions of other viral genomes. In this study, we found that both 38- and 57-kDa proteins in the human hepatocyte line PH5CH bound specifically to the 3'-end structure of HCV positive-strand RNA by a UV-induced cross-linking assay. The 57-kDa protein (p57), which had higher affinities to RNA probes, recognized a 26-nt sequence including the 5'-terminal 19 nt of the 3'X and 7 flanking nt, designated the transitional region. This sequence contains pyrimidine-rich motifs and shows similarity to the consensus binding sequence of the polypyrimidine tract-binding protein (PTB), which has been implicated in alternative pre-mRNA splicing and cap-independent translation. We found that this 3'X-binding p57 is identical to PTB. The 3'X-binding p57 was immunoprecipitated by anti-PTB antibody, and recombinant PTB bound to the 3'X RNA. In addition, p57 bound solely to the 3'-end region of positive-strand RNA, not to this region of negative-strand RNA. We suggest that 3'X-PTB interaction is involved in the specific initiation of HCV genome replication.  相似文献   

10.
The 5' cloverleaf in poliovirus RNA has a direct role in regulating the stability, translation, and replication of viral RNA. In this study, we investigated the role of stem a in the 5' cloverleaf in regulating the stability and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Our results showed that disrupting the duplex structure of stem a destabilized viral RNA and inhibited efficient negative-strand synthesis. Surprisingly, the duplex structure of stem a was not required for positive-strand synthesis. In contrast, altering the primary sequence at the 5'-terminal end of stem a had little or no effect on negative-strand synthesis but dramatically reduced positive-strand initiation and the formation of infectious virus. The inhibition of positive-strand synthesis observed in these reactions was most likely a consequence of nucleotide alterations in the conserved sequence at the 3' ends of negative-strand RNA templates. Previous studies suggested that VPgpUpU synthesized on the cre(2C) hairpin was required for positive-strand synthesis. Therefore, these results are consistent with a model in which preformed VPgpUpU serves as the primer for positive-strand initiation on the 3'AAUUUUGUC5' sequence at the 3' ends of negative-strand templates. Our results suggest that this sequence is the primary cis-acting element that is required for efficient VPgpUpU-primed positive-strand initiation.  相似文献   

11.
12.
13.
RNA structures present throughout RNA virus genomes serve as scaffolds to organize multiple factors involved in the initiation of RNA synthesis. Several of these RNA elements play multiple roles in the RNA replication pathway. An RNA structure formed around the 5′- end of the poliovirus genomic RNA has been implicated in the initiation of both negative- and positive-strand RNA synthesis. Dissecting the roles of these multifunctional elements is usually hindered by the interdependent nature of the viral replication processes and often pleiotropic effects of mutations. Here, we describe a novel approach to examine RNA elements with multiple roles. Our approach relies on the duplication of the RNA structure so that one copy is dedicated to the initiation of negative-strand RNA synthesis, while the other mediates positive-strand synthesis. This allows us to study the function of the element in promoting positive-strand RNA synthesis, independently of its function in negative-strand initiation. Using this approach, we demonstrate that the entire 5′-end RNA structure that forms on the positive-strand is required for initiation of new positive-strand RNAs. Also required to initiate positive-strand RNA synthesis are the binding sites for the viral polymerase precursor, 3CD, and the host factor, PCBP. Furthermore, we identify specific nucleotide sequences within “stem a” that are essential for the initiation of positive-strand RNA synthesis. These findings provide direct evidence for a trans-initiation model, in which binding of proteins to internal sequences of a pre-existing positive-strand RNA affects the synthesis of subsequent copies of that RNA, most likely by organizing replication factors around the initiation site.  相似文献   

14.
The 5' portion of the Sindbis virus (SIN) genome RNA is multifunctional. Besides initiating translation of the nonstructural polyprotein, RNA elements in the 5' 200 bases of the SIN genome RNA, or its complement at the 3' end of the negative-strand intermediate, play key roles in the synthesis of both negative- and positive-strand RNAs. We used here a combination of genetic and biochemical approaches to further dissect the functions of this sequence. Replacement of the SIN 5' end in defective-interfering (DI) and genome RNAs with sequences from a distantly related alphavirus, Semliki Forest virus (SFV), resulted in nonviable chimeras. The addition of five nucleotides from the 5' terminus of SIN restored negative-strand RNA synthesis in DI genomes but not their replication in vivo. Pseudorevertants of various SFV-SIN chimeras were isolated, and suppressor mutations were mapped to AU-rich sequences added to the 5' end of the original SFV 5' sequence or its "deleted" versions. Early pseudorevertants had heterogeneous 5' termini that were inefficient for replication relative to the parental SIN 5' sequence. In contrast, passaging of these pseudorevertant viral populations in BHK cells under competitive conditions yielded evolved, more homogeneous 5'-terminal sequences that were highly efficient for negative-strand synthesis and replication. These 5'-terminal sequences always began with 5'-AU, followed by one or more AU repeats or short stretches of oligo(A). Further analysis demonstrated a positive correlation between the number of repeat units and replication efficiency. Interestingly, some 5' modifications restored high-level viral replication in BHK-21 cells, but these viruses were impaired for replication in the cells of mosquito origin. These studies provide new information on sequence determinants required for SIN RNA replication and suggest new strategies for restricting cell tropism and optimizing the packaging of alphavirus vectors.  相似文献   

15.
Replication of rubella virus is initiated at the 3' end of the genomic RNA. An inverted repeat sequence of 12 nucleotides that is capable of forming a stem-loop structure is located at the 3' end of the RNA, 59 nucleotides upstream from the poly (A) tail. We screened the 158-bp region of the 3' end of the virus, including the stem-loop structure, for its ability to bind to host-cell proteins. Specific high-affinity binding of three cytosolic proteins with relative molecular masses (Mr) of 61, 63 and 68 kD to the stem-loop structure was observed by UV-induced covalent crosslinking. Altering the stem structure by removal of specific bases abolished the binding interactions. The binding of the host proteins is greatly increased after infection and coincides with the appearance of negative strand RNA synthesis. The increase in binding is dependent on new protein synthesis. The amount of the 61-kD protein that binds varies in uninfected cells and is maximal in cells that are in the stationary phase of growth. All binding activity could be abrogated by alkaline phosphatase treatment of cell lysates. A possible role of these host proteins in the replication of rubella virus is discussed.  相似文献   

16.
Rubella virus (RV) infections in adult women can be associated with acute and chronic arthritic symptoms. In many autoimmune individuals, antibodies are found targeting endogenous proteins, called autoantigens, contained in ribonucleoprotein complexes (RNPs). In order to understand the molecular mechanisms involved in the RV-associated pathology, we investigated the nature of cellular factors binding RV RNA and whether such RNPs were recognized by antibodies in infected individuals. Previously, we noted that cellular proteins associated with the RV 5'(+) stem-loop (SL) RNA are recognized by serum with Ro reactivity. To better understand the nature of the autoantigens binding RV cis-acting elements, serum samples from individuals with various autoimmune diseases were tested for their ability to immunoprecipitate RNPs containing labeled RV RNAs. A subset of serum samples recognizing autoantigen La, or Ro and La, immunoprecipitated both the RV 5'(+)SL and 3'(+)SL RNA-protein complexes. Autoantigens binding the RV 5'(+)SL and 3'(+)SL RNAs differed in molecular mass, specificities for respective RNA binding substrates, and sensitivity to alkaline phosphatase treatment. The La autoantigen was found to interact with the RV 5'(+)SL RNA as determined by immunological techniques and binding reactions with mixtures containing recombinant La protein. To test whether there is a correlation between La binding to an RV RNA element and the appearance of an anti-La response, we measured anti-La titers in RV-infected individuals. Significant anti-La activity was detected in approximately one-third of RV-infected individuals 2 years postinfection.  相似文献   

17.
The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3' untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ~35 and ~55 kDa were specifically cross-linked with RNA elements, whereupon the ~35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3' UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3' UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication.  相似文献   

18.
B Hsue  P S Masters 《Journal of virology》1997,71(10):7567-7578
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.  相似文献   

19.
20.
Liang Y  Gillam S 《Journal of virology》2000,74(11):5133-5141
Rubella virus nonstructural proteins, translated from input genomic RNA as a p200 polyprotein and subsequently processed into p150 and p90 by an intrinsic papain-like thiol protease, are responsible for virus replication. To examine the effect of p200 processing on virus replication and to study the roles of nonstructural proteins in viral RNA synthesis, we introduced into a rubella virus infectious cDNA clone a panel of mutations that had variable defective effects on p200 processing. The virus yield and viral RNA synthesis of these mutants were examined. Mutations that completely abolished (C1152S and G1301S) or largely abolished (G1301A) cleavage of p200 resulted in noninfectious virus. Mutations that partially impaired cleavage of p200 (R1299A and G1300A) decreased virus replication. An RNase protection assay revealed that all of the mutants synthesized negative-strand RNA as efficiently as the wild type does but produced lower levels of positive-strand RNA. Our results demonstrated that processing of rubella virus nonstructural protein is crucial for virus replication and that uncleaved p200 could function in negative-strand RNA synthesis, whereas the cleavage products p150 and p90 are required for efficient positive-strand RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号