首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-deformation oscillatory measurements were performed on pectin-sucrose-glucose syrup systems at a total level of solids of 81%, with the polysaccharide content being fixed at levels of industrial use (1%). The experimental temperature range was between 50 and - 50 degrees C. Analysis of the temperature dependence of viscoelastic processes by the equation of Williams, Landel, and Ferry provides values of fractional free volume for the temperatures covering the glass transition region. The shift factors used in the conversion of mechanical spectra into master curves were normalised at suitably different temperatures so that their temperature dependence becomes coincident. The treatment implies an iso-free-volume state and relates to changes in the monomeric friction coefficient with increasing levels of intermolecular interactions in the mixture. A free-volume related glass transition temperature was defined and manipulated markedly by introducing pectin of variable degrees of esterification to the sucrose-glucose syrup system.  相似文献   

2.
Four molecular fractions of gelatin produced by alkaline hydrolysis of collagen were investigated in the presence of cosolute to record the mechanical properties of the glass transition in high-solid preparations. Dynamic oscillatory and stress relaxation moduli in shear were recorded from 40°C to temperatures as low as -60°C. The small-deformation behavior of these linear polymers was separated by the method of reduced variables into a basic function of time alone and a basic function of temperature alone. The former allowed the reduction of isothermal runs into a master curve covering 17 orders of magnitude in the time domain. The latter follows the passage from the rubbery plateau through the glass transition region to the glassy state seen in the variation of shift factor, a(T) , as a function of temperature. The mechanical glass transition temperature (T(g) ) is pinpointed at the operational threshold of the free volume theory and the predictions of the reaction rate theory. Additional insights into molecular dynamics are obtained via the coupling model of cooperativity, which introduces the concept of coupling constant or interaction strength of local segmental motions that govern structural relaxation at the vicinity of T(g) . The molecular weight of the four gelatin fractions appears to have a profound effect on the transition temperature or coupling constant of vitrified matrices, as does the protein chemistry in relation to that of amorphous synthetic polymers or gelling polysaccharides.  相似文献   

3.
The paper constitutes an attempt to overcome the empiricism prevalent in the estimation of the glass transition temperature (Tg) of gelatin networks using rheological techniques. In doing so, it presents a study of the viscoelastic properties of a well-characterised gelatin sample covering the structural properties from the rubbery region to the glassy state. The pattern of oscillatory behaviour on shear is given by a master curve produced by shifting data obtained at different temperatures along the logarithmic time scale. Data reduction does not hold for all temperatures thus giving rise to thermorheological complexity. Within the temperature range at which molecular processes are represented by a simple distribution of relaxation times, a fundamental argument is developed to pinpoint the mechanical Tg. This should improve confidence in measured glassy properties over the empirical indicators found in the literature. As a demonstration, the glass transition temperature of gelatin at "zero moisture" obtained using the proposed framework of analysis is contrasted with earlier attempts to identify the mechanical Tg of gelatin solids.  相似文献   

4.
Small deformation dynamic oscillation was used to develop an index of physical significance for the rationalisation of the mechanical properties of high co-solute/biopolymer systems during vitrification. The index is based on the combined framework of Williams–Landel–Ferry equation with the free volume theory and is called the ‘rheological glass transition temperature, Tg’ thus differentiating it from the empirical calorimetric Tg used in thermal analysis. The rheological Tg is located at the conjunction of two distinct molecular processes, namely: free-volume effects in the glass transition region and the predictions of the reaction-rate theory in the glassy state. The method of reduced variables was used to shift the mechanical spectra of shear moduli to composite curves. The temperature dependence of shift factors for all materials was identical provided that they were normalised at suitably different reference temperatures, which reflect iso-free-volume states. The treatment makes free volume the overriding parameter governing the mechanical relaxation times during vitrification of high co-solute/biopolymer systems regardless of physicochemical characteristics. We believe that potential applications resulting from this fundamental work are numerous for the food and pharmaceutical industries.  相似文献   

5.
The small and large deformation properties of agarose in the presence of high levels of sugar were investigated. Mixtures can be described as lightly cross‐linked rubbers, which undergo vitrification upon cooling. The combined Williams–Landel–Ferry (WLF)/free volume framework was used to derive the glass transition temperature, the fractional free volume, and the thermal expansion coefficient of the glass. Sucrose‐rich cosolute crystallizes, but addition of the polymer encourages intermolecular interactions, which transform the mixture into a high viscosity glass. The mechanical properties of glucose syrup, a noncrystalline sugar, follow WLF behavior in the glass transition region and revert to an Arrhenius‐type prediction in the glassy state. Measurements on sugar samples and agarose–sugar mixtures were resolved into a basic function of temperature alone and a basic function of frequency (time) alone. The former traces the energetic cost of vitrification, which increases sharply with decreasing temperature. The latter, at long time scales, is governed by the infinite molecular weight of the agarose network. In the region of short times, the effect of free volume is active regardless of the sample composition. © 1999 John Wiley & Sons, Inc. Biopoly 49: 267–275, 1999  相似文献   

6.
Two primary biochemical reactions in seed ageing (lipid peroxidation and non-enzymatic protein glycosylation with reducing sugars) have been studied under different seed water contents and storage temperatures, and the role of the glassy state in retarding biochemical deterioration examined. The viability loss of Vigna radiata seeds during storage is associated with Maillard reactions; however, the contribution of primary biochemical reactions varies under different storage conditions. Biochemical deterioration and viability loss are greatly retarded in seeds stored below a high critical temperature (approximately 40 degrees C above glass transition temperature). This high critical temperature corresponds to the cross-over temperature (T(c)) of glass transition where molecular dynamics changes from a solid-like system to a normal liquid system. The data show that seed ageing slows down significantly, even before seed tissue enters into the glassy state.  相似文献   

7.
Biopharmaceutical proteins are often formulated and freeze dried in agents that protect them from deleterious reactions that can compromise activity and authenticity. Although such approaches are widely used, a detailed understanding of the molecular mechanisms of protein stabilization in low water content amorphous glasses is lacking. Further, whilst deterioration chemistries are well described in dilute solution, relatively little is known about the extent and mechanisms by which protein integrity is compromised in the glassy state. Here we have investigated the relationship between protein modification and rate thereof, with variation of pH, carbohydrate excipient, temperature and the glass transition temperature using a model protein, lysozyme. Mass spectrometry analysis and peptide mapping confirm that protein modifications do occur in the glassy state in a time‐, temperature‐, and carbohydrate excipient‐dependent manner. There were clear trends between the buffer pH and the primary modification detected (glycation). Most importantly, there were differences in the apparent reactivities of the lysine residues in the glass compared with those previously determined in solution, and therefore, the well‐characterized solution reactivity of this reaction cannot be used to predict likely sites of modification in the glassy state. These findings have implications for (i) the selection and combinations of formulation components, particularly with regard to glycation in the glassy state, and (ii) the design of procedures and methodologies for the improvement of protein stability in the glassy state. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
The real (G') and imaginary (G") components of the complex modulus have been measured between 0.1 and 100 rad/s in the temperature range of 70--55 degrees C for a mixture of 1% high acyl gellan with 79% glucose syrup, and 79% glucose syrup. The method of reduced variables gave superposed curves of G' and G" as a function of timescale of measurement, which matched the thermal profiles of shear modulus obtained by scanning at the constant rate of 1 degrees C/min. Data of the gellan/co-solute mixture could be analysed in terms of two distinct mechanisms. For the alpha dispersion, G' and G" superposed with the horizontal reduction factor a(T) whose temperature dependence followed an equation of the Williams-Landel-Ferry form. Mechanical spectra of the beta dispersion also superposed with the factor a(T) whose temperature dependence, however, corresponded to a constant energy of activation. Relaxation spectra have been calculated for both dispersions. Those for the alpha mechanism were attributed to the chain backbone motions and the friction coefficient per tetrasaccharide repeat unit in backbone motion was calculated from the extended Rouse theory. When the contribution of the solvent alone was studied, no spectra for the beta dispersion were observed supporting the hypothesis of the dispersion being attributed to the side-chain motions of the acyl groups. The spectra of the beta mechanism were relatively broader than for the alpha dispersion. The relative location of the beta dispersion on the time scale or temperature range was found to be between the alpha dispersion (glass transition region) and the glassy state.  相似文献   

9.
Most biopolymers exist in a plasticized state, whether it is naturally with water or unnaturally with glycerol or other suitable polyol, to make a flexible material. We have found that the extent to which a biopolymer can be plasticized is dependent on its molecular and higher order structures outside of simply molecular weight. Lactalbumin, ovalbumin, corn zein, wheat gluten, and feather keratin were plasticized with glycerol from very low to very high amounts. The conformation of the proteins was monitored with Fourier transform-infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) and correlated with the tensile modulus. Protein conformational changes were pronounced for polar proteins with a low amount of cysteine. FT-IR showed that the conformational changes resulted in ordering of the protein at low to moderate plasticization levels. For proteins with little resistance to conformational changes, additional small-scale ordering occurred around the glass transition, as observed in XRD. Accurate comparison of plasticized proteins was dependent on knowing whether or not the protein was glassy or rubbery at room temperature as no differences arose in the glassy state. The transition from glassy to rubbery behavior with plasticization level can be found from modulus, FT-IR, and XRD data.  相似文献   

10.
Isothermal-isobaric molecular dynamics simulations are used to calculate the specific volume of models of trehalose and three amorphous trehalose-water mixtures (2.9%, 4.5% and 5.3% (w/w) water, respectively) as a function of temperature. Plots of specific volume versus temperature exhibit a characteristic change in slope when the amorphous systems change from the glassy to the rubbery state and the intersection of the two regression lines provides an estimate of the glass transition temperature T(g). A comparison of the calculated and experimental T(g) values, as obtained from differential scanning calorimetry, shows that despite the predicted values being systematically higher (about 21-26K), the trend and the incremental differences between the T(g) values have been computed correctly: T(g)(5.3%(w/w))相似文献   

11.
J M Gosline  C J French 《Biopolymers》1979,18(8):2091-2103
The dynamic mechanical properties of water-swollen elastin under physiological conditions have been investigated. When elastin is tested as a colsed, fixed-volume system, mechanical data could be temperature shifted to produce master curves. Master curves for elastin hydrated at 36°C (water content, 0.46 g water/g protein) and 55°C (water content, 0.41 g/g) were constructed, and in both cases elastin goes through a glass transition, with the glass transition temperatures of -46 and -21°C, respectively. Temperature shift data used to construct the master curves follow the WLF equation, and the glass transition appears to be characteristic of an amorphous, random-polymer network. For elastin tested as an open, variable-volume system free to change its swollen volume as temperature is changed, dynamic mechanical properties appear to be virtually independent of temperature. No glass transition is observed because elastin swelling increases with decreased temperature, and the increase in water content shifts elastin away from its glass transition. It is suggested that the hydrophobic character of elastin, which gives rise to the unusual swelling properties of elastin, evolved to provide a temperature-independent elastomer for the cold-blooded, lower vertebrates.  相似文献   

12.
Small-deformation rotational oscillation was used to examine the effect of small additions of galactomannan and kappa-carrageenan on the vitrification of glucose syrup at a total level of solids of 83%. The method of reduced variables allowed construction of composite curves covering the glass transition and glassy state (from 10(5) to 10(9.5) Pa) over a wide frequency range (up to 15 orders of magnitude). The combined WLF/free volume framework was employed to determine the rheological glass transition temperature (T(g)), fractional free volume and thermal expansion coefficient of the samples. It was found that the WLF-predicted glass transition temperature matched the cross over of experimental modulus traces in the passage from the glass transition (GG') to the glassy state (GG"). This coincides with the mechanistic transformation from free volume effects to the Arrhenius-type phenomena, thus ascribing physical significance to the rheological T(g). The T(g) value of 83% glucose syrup at a scan rate of 2 degrees C min(-1) was -25.3 degrees C. Replacing, for example, 1% glucose syrup with guar gum shifted the T(g) of the mixture to -19.7 degrees C. Network formation via the K(+)-supported junction zones of the kappa-carrageenan chains further increased the T(g) to about -1 degrees C. It appears that the low rates of relaxation processes and diffusion mobility in the presence of a polysaccharide network accelerate the collapse of the free volume thus inducing vitrification of the high sugar/polysaccharide mixture at high temperatures.  相似文献   

13.
Films of acid-hydrolyzed hydroxypropylated pea starch with average molecular weight M w ranging from 3.3 x 10 (4) g/mol to 1.6 x 10 (6) g/mol were prepared from 25% (w/w) solution by casting. The structure of the films was investigated by means X-ray diffraction and calorimetry, evidencing a B-type crystalline structure. In similar drying conditions, 25 degrees C and 40% of relative humidity, the crystallinity varied from 24% for the low molecular weight (A5) to almost none for the highest molecular weight (A160). The influence of the drying temperature was also investigated. A reduction of the crystallinity from 16% to almost none was found when increasing temperature from 25 to 65 degrees C. The glass transition temperature ( T g) at different water contents was determined. The difference of T g between the first and the second scan was interpreted by changes in the water distribution between phases into the B-type crystalline structure. Mechanical properties of the films determined by tensile tests and by DMTA in the glassy state showed no effect of the average molecular weight or of crystallinity. In contrast, thermomechanical experiments by DMTA showed that the average molecular weight of the sample influenced the mechanical relaxation and the moduli in the rubbery state.  相似文献   

14.
The effect of sucrose, maltodextrin and skim milk on survival of L. bulgaricus after drying was studied. Survival could be improved from 0.01% for cells that were dried in the absence of protectants to 7.8% for cells dried in a mixture of sucrose and maltodextrin. Fourier transform infrared spectroscopy (FTIR) was used to study the effect of the protectants on the overall protein secondary structure and thermophysical properties of the dried cells. Sucrose, maltodextrin and skim milk were found to have minor effects on the membrane phase behavior and the overall protein secondary structure of the dried cells. FTIR was also used to show that the air-dried cell/protectant solutions formed a glassy state at ambient temperature. 1-Palmitoyl 2-oleoyl phosphatidyl choline (POPC) was used in order to determine if sucrose and maltodextrin have the ability to interact with phospholipids during drying. In addition, the glass transition temperature and strength of hydrogen bonds in the glassy state were studied using this model system. Studies using poly-L-lysine were done in order to determine if sucrose and maltodextrin are able to stabilize protein structure during drying. As expected, sucrose depressed the membrane phase transition temperature (Tm) of POPC in the dried state and prevented conformational changes of poly-L-lysine during drying. Maltodextrin, however, did not depress the Tm of dried POPC and was less effective in preventing conformational changes of poly-L-lysine during drying. We suggest that when cells are dried in the presence of sucrose and maltodextrin, sucrose functions by directly interacting with biomolecules, whereas maltodextrin functions as an osmotically inactive bulking compound causing spacing of the cells and strengthening of the glassy matrix.  相似文献   

15.
Wang S  Lu L  Yaszemski MJ 《Biomacromolecules》2006,7(6):1976-1982
Poly(propylene fumarate) (PPF) is an important biodegradable and cross-linkable polymer designed for bone-tissue-engineering applications. For the first time we report the extensive characterization of this biomaterial including molecular weight dependences of physical properties such as glass transition temperature Tg, thermal degradation temperature Td, density rho, melt viscosity eta0, hydrodynamic radius RH, and intrinsic viscosity [eta]. The temperature dependence of eta0 changes progressively with molecular weight, whereas it can be unified when the temperature is normalized to Tg. The plateau modulus and entanglement molecular weight Me have been obtained from the rheological master curves. A variety of chain microstructure parameters such as the Mark-Houwink-Sakurada constants K and alpha, characteristic ratio Cinfinity, unperturbed chain dimension r0(2)/M, packing lengthp, Kuhn length b, and tube diameter a have been deduced. Further correlation between the microstructure and macroscopic physical properties has been discussed in light of recent progress in polymer dynamics to supply a better understanding about this unsaturated polyester to advance its biomedical uses. The molecular weight dependence of Tg for six polymer species including PPF has been summarized to support that Me is irrelevant for the finite length effect on the glass transition, whereas surprisingly these polymers can be divided into two groups when their normalized Tg is plotted simply against Mw to indicate the deciding roles of inherent chain properties such as chain fragility, intermolecular cooperativity, and chain end mobility.  相似文献   

16.
Intracellular glasses and seed survival in the dry state   总被引:2,自引:0,他引:2  
So-called orthodox seeds can resist complete desiccation and survive the dry state for extended periods of time. During drying, the cellular viscosity increases dramatically and in the dry state, the cytoplasm transforms into a glassy state. The formation of intracellular glasses is indispensable to survive the dry state. Indeed, the storage stability of seeds is related to the packing density and molecular mobility of the intracellular glass, suggesting that the physico-chemical properties of intracellular glasses provide stability for long-term survival. Whereas seeds contain large amounts of soluble non-reducing sugars, which are known to be good glass formers, detailed in vivo measurements using techniques such as FTIR and EPR spectroscopy reveal that these intracellular glasses have properties that are quite different from those of simple sugar glasses. Intracellular glasses exhibit slow molecular mobility and a high molecular packing, resembling glasses made of mixtures of sugars with proteins, which potentially interact with additional cytoplasmic components such as salts, organic acids and amino acids. Above the glass transition temperature, the cytoplasm of biological systems still exhibits a low molecular mobility and a high stability, which serves as an ecological advantage, keeping the seeds stable under adverse conditions of temperature or water content that bring the tissues out of the glassy state.  相似文献   

17.
《Annals of botany》1997,79(3):291-297
The relationship between the glassy state in seeds and storage stability was examined, using the glass transition curve and a seed viability database from previous experiments. Storage data for seeds at various water contents were studied by Williams–Landel–Ferry (WLF) kinetics, whereas the glass transition curves of seeds with different storage stability were analysed by the Gordon–Taylor equation in terms of the plasticization effect of water on seed storage stability. It was found that the critical temperatures (Tc) for long-term storage of three orthodox seeds were near or below their glass transition temperatures (Tg), indicating the requirement for the presence of the glassy state for long-term seed storage. The rate of seed viability loss was a function of T-Tgat T>Tg, which fitted the WLF equation well, suggesting that storage stability was associated with the glass transition, and that the effect of water content on seed storage was correlated with the plasticization effect of water on intracellular glasses. A preliminary examination suggested a possible link between the glass transition curve and seed storage stability. According to the determined WLF constants, intracellular glasses in seeds fell into the second class of amorphous systems as defined by Slade and Levine (Critical Reviews in Food Science and Nutrition30: 115–360, 1991). These results support the interpretation that the glassy state plays an important role in storage stability and should be a major consideration in optimizing storage conditions.  相似文献   

18.
Although changes of cytoskeleton (CSK) stiffness and friction can be induced by diverse interventions, all mechanical changes reported to date can be scaled onto master relationships that appear to be universal. To assess the limits of the applicability of those master relationships, we focused in the present study on actin and used a panel of actin-manipulating drugs that is much wider than any used previously. We focused on the cultured rat airway smooth muscle (ASM) cell as a model system. Cells were treated with agents that directly modulate the polymerization (jasplakinolide, cytochalasin D, and latrunculin A), branching (genistein), and cross linking (phallacidin and phalloidin oleate) of the actin lattice. Contractile (serotonin, 5-HT) and relaxing (dibutyryl adenosine 3',5'-cyclic monophosphate, DBcAMP) agonists and a myosin inhibitor (ML-7) were also tested for comparison, because these agents may change the structure of actin indirectly. Using optical magnetic twisting cytometry, we measured elastic and frictional moduli before and after treatment with each agent. Stiffness increased with frequency as a weak power law, and changes of friction paralleled those of stiffness until they approached a Newtonian viscous limit. Despite large differences in the mechanism of action among the interventions, all data collapsed onto master curves that depended on a single parameter. In the context of soft glassy systems, that parameter would correspond to an effective temperature of the cytoskeletal matrix and reflect the effects of molecular crowding and associated molecular trapping. These master relationships demonstrate that when the mechanical properties of the cell change, they are constrained to do so along a special trajectory. Because mechanical characteristics of the cell shadow underlying molecular events, these results imply special constraints on the protein-protein interactions that dominate CSK mechanical properties. structural damping; scale-free; glass  相似文献   

19.
The effect of water on the structure and physical properties of amorphous polysaccharide matrices is investigated by combining a thermodynamic approach including pressure- and temperature-dependent dilatometry with a nanoscale analysis of the size of intermolecular voids using positron annihilation lifetime spectroscopy. Amorphous polysaccharides are of interest because of a number of unusual properties which are likely to be related to the extensive hydrogen bonding between the carbohydrate chains. Uptake of water by the carbohydrate matrices leads to a strong increase in the size of the holes between the polymer chains in both the glassy and rubbery states while at the same time leading to an increase in matrix free volume. Thermodynamic clustering theory indicates that, in low-moisture carbohydrate matrices, water molecules are closely associated with the carbohydrate chains. Based on these observations, we propose a novel model of plasticization of carbohydrate polymers by water in which the water dynamically disrupts chains the hydrogen bonding between the carbohydrates, leading to an expansion of the matrix originating at the nanolevel and increasing the number of degrees of freedom of the carbohydrate chains. Consequently, even in the glassy state, the uptake of water leads to increased rates of matrix relaxation and mobility of small permeants. In contrast, low-molecular weight sugars plasticize the carbohydrate matrix without appreciably changing the structure and density of the rubbery state, and their role as plasticizer is most likely related to a reduction of the number of molecular entanglements. The improved molecular packing in glassy matrices containing low molecular weight sugars leads to a higher matrix density, explaining, despite the lower glass transition temperature, the reduced mobility of small permeants in such matrices.  相似文献   

20.
The glass transition temperature (T(g)) of a dry ultrafiltrated pectinlyase (PL) preparation decreased from 56 to 24 degrees C when water content increased to 20%. The thermal transition temperature (T(p)) for protein denaturation decreased greatly up to 40% moisture; above 40% no further changes in T(p) were observed. In the glassy state, a lag period of approximately 7 days with no PL activity loss was observed; after that, PL activity was lost. Above T(g), the rates of PL inactivation greatly increased. In the glassy state E(a) was 16.6 kJ/mol. When the system was in a higher mobility state (rubbery), E(a) increased to 66.5 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号