首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sar-coplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCI2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of-10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.  相似文献   

2.
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.  相似文献   

3.
Neocortical beta-amyloid (Abeta) aggregates in Alzheimer's disease (AD) are enriched in transition metals that mediate assembly. Clioquinol (CQ) targets metal interaction with Abeta and inhibits amyloid pathology in transgenic mice. Here, we investigated the binding properties of radioiodinated CQ ([(125)I]CQ) to different in vitro and in vivo Alzheimer models. We observed saturable binding of [(125)I]CQ to synthetic Abeta precipitated by Zn(2+) (K(d)=0.45 and 1.40 nm for Abeta(1-42) and Abeta(1-40), respectively), which was fully displaced by free Zn(2+), Cu(2+), the chelator DTPA (diethylene triamine pentaacetic acid) and partially by Congo red. Sucrose density gradient of post-mortem AD brain indicated that [(125)I]CQ concentrated in a fraction enriched for both Abeta and Zn, which was modulated by exogenous addition of Zn(2+) or DTPA. APP transgenic (Tg2576) mice injected with [(125)I]CQ exhibited higher brain retention of tracer compared to non-Tg mice. Autoradiography of brain sections of these animals confirmed selective [(125)I]CQ enrichment in the neocortex. Histologically, both thioflavine-S (ThS)-positive and negative structures were labeled by [(125)I]CQ. A pilot SPECT study of [(123)I]CQ showed limited uptake of the tracer into the brain, which did however, appear to be more rapid in AD patients compared to age-matched controls. These data support metallated Abeta species as the neuropharmacological target of CQ and indicate that this drug class may have potential as in vivo imaging agents for Alzheimer neuropathology.  相似文献   

4.
Vanadate is a commonly used Ca2+ pump blocker, exerting a substantial effect on Ca2+ extrusion at millimolar concentrations in human red cells. At such levels, vanadate also seems to open an L type-like Ca2+ channel in these cells (J Biol Chem 257 (1982) 7414; Gen Physiol Biophys 16 (1997) 359). Since neither a dose-dependence effect nor a metabolic requirement for the latter action could be found in the literature, we have addressed this matter in the present work. Accordingly, vanadate action on Ca2+ entry was systematically investigated in both young and old human red cells after metabolic depletion. Although vanadate enhanced Ca2+ entry indifferently in either cell type, a distinct over-all effect was paradoxically found depending on whether or not metabolic substrates that give rise to ATP were present. In ATP-depleted cells, unlike with ATP-containing cells, vanadate-stimulated Ca2+ entry was neither blocked by raising external K+ nor by adding voltage-dependent Ca2+ channel blockers (nifedipine, calciseptine, FTX3.3) or compounds affecting polyphosphoinositide metabolism (Li+, neomycin). Likewise, full substitution of external Na+ by other cations did not inhibit vanadate-enhanced Ca2+ entry. Regardless of the cell age, stimulation by vanadate depended strongly on internal Na+ (0-30 mM). Vanadate stimulation was significantly reduced (about 55%) by heparin (10 mg/ml) only in young cells and by ryanodine (about 35%, 250 microM) in old cells. The results suggest presence of a new vanadate-induced Ca2+ entry pathway in ATP-depleted cells.  相似文献   

5.
The role of the Na+/Ca2+ exchanger (NCX) as the main pathway for Ca2+ extrusion from ventricular myocytes is well established. However, both the role of the Ca2+ entry mode of NCX in regulating local Ca2+ dynamics and the role of the Ca2+ exit mode during the majority of the physiological action potential (AP) are subjects of controversy. The functional significance of NCXs location in T-tubules and potential co-localization with ryanodine receptors was examined using a local Ca2+ control model of low computational cost. Our simulations demonstrate that under physiological conditions local Ca2+ and Na+ gradients are critical in calculating the driving force for NCX and hence in predicting the effect of NCX on AP. Under physiological conditions when 60% of NCXs are located on T-tubules, NCX may be transiently inward within the first 100 ms of an AP and then transiently outward during the AP plateau phase. Thus, during an AP NCX current (INCX) has three reversal points rather than just one. This provides a resolution to experimental observations where Ca2+ entry via NCX during an AP is inconsistent with the time at which INCX is thought to become inward. A more complex than previously believed dynamic regulation of INCX during AP under physiological conditions allows us to interpret apparently contradictory experimental data in a consistent conceptual framework. Our modelling results support the claim that NCX regulates the local control of Ca2+ and provide a powerful tool for future investigations of the control of sarcoplasmic reticulum (SR) Ca2+ release under pathological conditions.  相似文献   

6.
Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sarcoplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCI2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm · s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of ~10 -5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.  相似文献   

7.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt.  相似文献   

8.
Inhibition of the accumulation of amyloid beta-peptide (Abeta) and the formation of beta-amyloid fibrils (fAbeta) from Abeta, as well as the degradation of pre-formed fAbeta in the CNS would be attractive therapeutic objectives for the treatment of Alzheimer's disease (AD). We previously reported that nordihydroguaiaretic acid (NDGA) inhibited fAbeta formation from Abeta(1-40) and Abeta(1-42) dose-dependently in the range of 10-30 micromin vitro. Utilizing fluorescence spectroscopic analysis with thioflavin T and electron microscopic study, we show here that NDGA dose-dependently breaks down fAbeta(1-40) and fAbeta(1-42) within a few hours at pH 7.5 at 37 degrees C. At 4 h, the fluorescence of fAbeta(1-40) and fAbeta(1-42) incubated with 50 microm NDGA was 5% and 10% of the initial fluorescence, respectively. The activity of NDGA to break down these fAbetas was observed even at a low concentration of 0.1 microm. At 1 h, many short, sheared fibrils were observed in the mixture incubated with 50 microm NDGA, and at 4 h, the number of fibrils reduced markedly, and small amorphous aggregates were observed. We next compared the activity of NDGA to break down fAbeta(1-40) and fAbeta(1-42), with other molecules reported to inhibit fAbeta formation from Abeta and/or to degrade pre-formed fAbeta both in vivo and in vitro. At a concentration of 50 microm, the overall activity of the molecules examined in this study was in the order of: NDGA > rifampicin = tetracycline > poly(vinylsulfonic acid, sodium salt) = 1,3-propanedisulfonic acid, disodium salt > beta-sheet breaker peptide (iAbeta5). In cell culture experiments, fAbeta disrupted by NDGA were less toxic than intact fAbeta, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Although the mechanisms by which NDGA inhibits fAbeta formation from Abeta, as well as breaking down pre-formed fAbetain vitro, are still unclear, NDGA could be a key molecule for the development of therapeutics for AD.  相似文献   

9.
10.
The inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, is the main regulator of intracellular Ca(2+) mobilization in non-excitable cells. An emerging body of evidence suggests that specific regulatory control of the Ca(2+) signaling pathway is modulated by the activation of additional signaling pathways. In the present study, we investigated the influence of the PI3-kinase/mammalian target of rapamycin (mTOR) pathway on the activity of the IP(3)R/Ca(2+) signaling pathway in RINm5F cells. We used a co-immunoprecipitation approach to show that mTOR physically interacts with IP(3)R-3 in an mTOR activity-dependent manner. We also showed that IP(3)R is phosphorylated by mTOR in cellulo. All the conditions known to modulate mTOR activity (IGF-1, wortmannin, rapamycin, PP242, and nutrient starvation) were shown to modify carbachol-induced Ca(2+) signaling in RINm5F cells. Lastly, we used an assay that directly measures the activity of IP(3)R, to show that mTOR increases the apparent affinity of IP(3)R. Given that mTOR controls cell proliferation and cell homeostasis, and that Ca(2+) plays a key role in these two phenomena, it follows that mTOR facilitates IP(3)R-mediated Ca(2+) release when the nutritional status of cells requires it.  相似文献   

11.
A growing body of evidence suggests a relationship between oxidative stress and beta-amyloid (Abeta) peptide accumulation, a hallmark in the pathogenesis of Alzheimer's disease (AD). However, a direct causal relationship between oxidative stress and Abeta pathology has not been established in vivo. Therefore, we crossed mice with a knockout of one allele of manganese superoxide dismutase (MnSOD), a critical antioxidant enzyme, with Tg19959 mice, which overexpress a doubly mutated human beta-amyloid precursor protein (APP). Partial deficiency of MnSOD, which is well established to cause elevated oxidative stress, significantly increased brain Abeta levels and Abeta plaque burden in Tg19959 mice. These results indicate that oxidative stress can promote the pathogenesis of AD and further support the feasibility of antioxidant approaches for AD therapy.  相似文献   

12.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+-dependent signal transduction  相似文献   

13.
Calcium-associated mechanisms in gut pacemaker activity   总被引:2,自引:1,他引:1  
A considerable body of evidence has revealed that interstitial cells of Cajal (ICC), identified with c-Kit-immunoreactivity, act as gut pacemaker cells, with spontaneous Ca(2+) activity in ICC as the probable primary mechanism. Namely, intracellular (cytosolic) Ca(2+) oscillations in ICC periodically activate plasmalemmal Ca(2+)-dependent ion channels and thereby generate pacemaker potentials. This review will, thus, focus on Ca(2+)-associated mechanisms in ICC in the gastrointestinal (GI) tract, including auxiliary organs.  相似文献   

14.
Ca(2+) release via intracellular release channels, IP(3)Rs (inositol 1,4,5-trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well-defined Ca(2+)-leak pathways that may play an important role in the control of the Ca(2+) load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this 'basal' leak are not known, but recent data suggest that both IP(3)Rs and RyRs may also operate as Ca(2+)-leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP(3)Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP(3)R and RyR channels, and to discuss the concept that those channels can participate in Ca(2+)-leak pathways.  相似文献   

15.
The possibility of detecting progressive changes in cognitive function reflecting the spatio-temporal pattern of beta-amyloid peptide (Abeta) deposition was investigated in Tg2576 mice overexpressing the human mutant amyloid precursor protein (hAPP). Here, we show that at 7 months of age, Tg2576 mice exhibited a selective deficit in hippocampus-based operations including a defective habituation of object exploration, a lack of reactivity to spatial novelty and a disruption of allothetic orientation in a cross-shaped maze. At 14 months of age, Tg2576 mice displayed a more extended pattern of behavioral abnormalities, because they failed to react to object novelty and exclusively relied on motor-based orientation in the cross-shaped maze. However, an impaired reactivity to spatial and object novelty possibly reflecting age-related attention deficits also emerged in aged wild-type mice. These findings further underline that early cognitive markers of AD can be detected in Tg2576 mice before Abeta deposition occurs and suggest that as in humans, cognitive deterioration progressively evolves from an initial hippocampal syndrome to global dementia because of the combined effect of the neuropathology and aging.  相似文献   

16.
Fu H  Li W  Lao Y  Luo J  Lee NT  Kan KK  Tsang HW  Tsim KW  Pang Y  Li Z  Chang DC  Li M  Han Y 《Journal of neurochemistry》2006,98(5):1400-1410
Beta amyloid protein (Abeta) and acetylcholinesterase (AChE) have been shown to be closely implicated in the pathogenesis of Alzheimer's disease. In the current study, we investigated the effects of bis(7)-tacrine, a novel dimeric AChE inhibitor, on Abeta-induced neurotoxicity in primary cortical neurons. Bis(7)-tacrine, but not other AChE inhibitors, elicited a marked reduction of both fibrillar and soluble oligomeric forms of Abeta-induced apoptosis as evidenced by chromatin condensation and DNA specific fragmentation. Both nicotinic and muscarinic receptor antagonists failed to block the effects of bis(7)-tacrine. Instead, nimodipine, a blocker of L-type voltage-dependent Ca2+ channels (VDCCs), attenuated Abeta neurotoxicity, whereas N-, P/Q- or R-type VDCCs blockers and ionotropic glutamate receptor antagonists did not. Fluorescence Ca2+ imaging assay revealed that, similar to nimodipine, bis(7)-tacrine reversed Abeta-triggered intracellular Ca2+ increase, which was mainly contributed by the extracellular Ca2+ instead of endoplasmic reticulum and mitochondria Ca2+. Concurrently, using whole cell patch-clamping technique, it was found that bis(7)-tacrine significantly reduced the augmentation of high voltage-activated inward calcium currents induced by Abeta. These results suggest that bis(7)-tacrine attenuates Abeta-induced neuronal apoptosis by regulating L-type VDCCs, offers a novel modality as to how the agent exerts neuroprotective effects.  相似文献   

17.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.  相似文献   

18.
Ca2+ is a highly versatile second messenger that plays a key role in the regulation of numerous cell processes. One‐way cells ensure the specificity and reliability of Ca2+ signals is by organizing them spatially in the form of waves that propagate throughout the cell or within a specific subcellular region. In non‐excitable cells, the inositol 1,4,5‐trisphosphate receptor (IP3R) is responsible for the release of Ca2+ from the endoplasmic reticulum. The spatial aspect of the Ca2+ signal depends on the organization of various elements of the Ca2+ signaling toolkit and varies from tissue to tissue. Ca2+ is implicated in many of endothelium functions that thus depend on the versatility of Ca2+ signaling. In the present study, we showed that the disruption of caveolae microdomains in bovine aortic endothelial cells (BAEC) with methyl‐ß‐cyclodextrin was not sufficient to disorganize the propagation of Ca2+ waves when the cells were stimulated with ATP or bradykinin. However, disorganizing microfilaments with latrunculin B and microtubules with colchicine both prevented the formation of Ca2+ waves. These results suggest that the organization of the Ca2+ waves mediated by IP3R channels does not depend on the integrity of caveolae in BAEC, but that microtubule and microfilament cytoskeleton assembly is crucial. J. Cell. Biochem. 106: 344–352, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Alzheimer's disease (AD) is characterized by cerebral deposits of beta-amyloid (A beta) peptides and neurofibrillary tangles (NFT) which are surrounded by inflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD and delays the onset of the disease. It has been postulated that some NSAIDs target pathological hallmarks of AD by interacting with several pathways, including the inhibition of cyclooxygenases (COX) and activation of the peroxisome proliferator-activated receptor gamma. A variety of experimental studies indicate that a subset of NSAIDs such as ibuprofen, flurbiprofen, indomethacin and sulindac also possess A beta-lowering properties in both AD transgenic mice and cell cultures of peripheral, glial and neuronal origin. While COX inhibition occurs at low concentrations in vitro (nM-low microm range), the A beta-lowering activity is observed at high concentrations (< or = 50 microm). Nonetheless, studies with flurbiprofen or ibuprofen in AD transgenic mice show that the effects on A beta levels or deposition are attained at plasma levels similar to those achieved in humans at therapeutic dosage. Still, it remains to be assessed whether adequate concentrations are reached in the brain. This is a crucial aspect that will allow defining the dose-window and the length of treatment in future clinical trials. Here, we will discuss how the combination of anti-amyloidogenic and anti-inflammatory activities of certain NSAIDs may produce a profile potentially relevant to their clinical use as disease-modifying agents for the treatment of AD.  相似文献   

20.
Cerebral deposition of amyloid beta-peptide (Abeta) in the brain is an invariant feature of Alzheimer's disease (AD). A consistent protective effect of wine consumption on AD has been documented by epidemiological studies. In the present study, we used fluorescence spectroscopy with thioflavin T and electron microscopy to examine the effects of wine-related polyphenols (myricetin, morin, quercetin, kaempferol (+)-catechin and (-)-epicatechin) on the formation, extension, and destabilization of beta-amyloid fibrils (fAbeta) at pH 7.5 at 37 degrees C in vitro. All examined polyphenols dose-dependently inhibited formation of fAbeta from fresh Abeta(1-40) and Abeta(1-42), as well as their extension. Moreover, these polyphenols dose-dependently destabilized preformed fAbetas. The overall activity of the molecules examined was in the order of: myricetin = morin = quercetin > kaempferol > (+)-catechin = (-)-epicatechin. The effective concentrations (EC50) of myricetin, morin and quercetin for the formation, extension and destabilization of fAbetas were in the order of 0.1-1 micro m. In cell culture experiments, myricetin-treated fAbeta were suggested to be less toxic than intact fAbeta, as demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Although the mechanisms by which these polyphenols inhibit fAbeta formation from Abeta, and destabilize pre-formed fAbetain vitro are still unclear, polyphenols could be a key molecule for the development of preventives and therapeutics for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号