首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proteolytic digest of fibronectin (FN), but not intact FN, induced TNF-alpha secretion of rat basophilic leukemia (RBL-2H3) cells. As a result of the identification of FN fragment responsible for TNF-alpha secretion, a 30-kDa fragment derived from the carboxyl-terminal heparin-binding (Hep 2) domain of FN was isolated from the FN digest. The TNF-alpha secretion was abrogated by treatment of RBL-2H3 cells with cycloheximide, indicating the de novo synthesis of TNF-alpha, but not with polymyxin B, excluding the possible TNF-alpha induction by some contaminated lipopolysaccharides. A 22-mer synthetic peptide originated from the Hep 2 domain, termed FNIII14, which has been found to negatively modulate the beta1 integrin activation, had the ability to induce TNF-alpha production, whereas this activity of FNIII14 disappeared by shuffling a YTIYVIAL sequence essential for the integrin-inactivating activity. FNIII14 suppressed the spreading of RBL-2H3 cells on FN substrate, wherein RBL-2H3 cell proliferation was inhibited with FNIII14 in a dose-dependent manner. Thus, it appears that FN fragments containing the YTIYVIAL anti-adhesive site affect the activation status of RBL-2H3 mast cells, characterized by the stimulation of TNF-alpha production and growth suppression, probably due to negative regulation of beta1 integrin activity.  相似文献   

2.
The process by which fibronectin (FN), a soluble multidomain protein found in tissue fluids, forms insoluble fibrillar networks in the extracellular matrix is poorly understood. Cryptic sites found in FN type III domains have been hypothesized to function as nucleation points, thereby initiating fibrillogenesis. Exposure of these sites could occur upon tension-mediated mechanical rearrangement of type III domains. Here, we present the solution structures of the second type III domain of human FN ((2)FNIII), and that of an interaction complex between the first two type III domains ((1-2)FNIII). The two domains are connected through a long linker, flexible in solution. A weak but specific interdomain interaction maintains (1-2)FNIII in a closed conformation that associates weakly with the FN N-terminal 30 kDa fragment (FN30 kDa). Disruption of the interdomain interaction by amino-acid substitutions dramatically enhances association with FN30 kDa. Truncation analysis of (1-2)FNIII reveals that the interdomain linker is necessary for robust (1-2)FNIII-FN30 kDa interaction. We speculate on the importance of this interaction for FN function and present a possible mechanism by which tension could initiate fibrillogenesis.  相似文献   

3.
Fibronectin (FN) assembly into extracellular matrix is tightly regulated and essential to embryogenesis and wound healing. FN fibrillogenesis is initiated by cytoskeleton-derived tensional forces transmitted across transmembrane integrins onto RGD binding sequences within the tenth FN type III (10FNIII) domains. These forces unfold 10FNIII to expose cryptic FN assembly sites; however, a specific sequence has not been identified in 10FNIII. Our past steered molecular dynamics simulations modeling 10FNIII unfolding by force at its RGD loop predicted a mechanical intermediate with a solvent-exposed N terminus spanning the A and B β-strands. Here, we experimentally confirm that the predicted 23-residue cryptic peptide 1 (CP1) initiates FN multimerization, which is mediated by interactions with 10FNIII that expose hydrophobic surfaces that support 8-anilino-1-napthalenesulfonic acid binding. Localization of multimerization activity to the C terminus led to the discovery of a minimal 7-amino acid “multimerization sequence” (SLLISWD), which induces polymerization of FN and the clotting protein fibrinogen in addition to enhancing FN fibrillogenesis in fibroblasts. A point mutation at Trp-6 that reduces exposure of hydrophobic sites for 8-anilino-1-napthalenesulfonic acid binding and β-structure formation inhibits FN multimerization and prevents physiological cell-based FN assembly in culture. We propose a model for cell-mediated fibrillogenesis whereby cell traction force initiates a cascade of intermolecular exchange starting with the unfolding of 10FNIII to expose the multimerization sequence, which interacts with strand B of another 10FNIII domain via a Trp-mediated β-strand exchange to stabilize a partially unfolded intermediate that propagates FN self-assembly.  相似文献   

4.
Fibronectin matrix assembly involves interactions among various regions of the molecule, which contribute to elongation and stabilization of the fibrils. In this study, we examined the possible role of the heparin III domain of fibronectin (repeats III4-5) in fibronectin fibrillogenesis. We show that a recombinant fragment comprising these repeats (FNIII4-5 fragment) blocked fibronectin fibril formation and the incorporation of 125I-fibronectin into cell layers. Binding assays using a biosensor revealed that FNIII4-5 bound fibronectin and the amino-terminal 70 kDa and 29 kDa fragments. It also bound to itself, indicating a previously unidentified self-association site in repeats III4-5. These interactions were specific since FNIII4-5 did not bind to the FNIII7-10 fragment, representing a central region in fibronectin. The fibronectin-binding property of the III4-5 domain, but not its matrix assembly inhibitory function, was apparently cryptic in larger fragments. By mutating the arginine residues in the WTPPRAQITGYRLTVGLTRR proteoglycan-binding sequence (HBP/III5 site) of FNIII4-5 [Moyano, J.V., Carnemolla, B., Albar, J.P., Leprini, A., Gaggero, B., Zardi, L., Garcia-Pardo, A., 1999. Cooperative role for activated alpha4beta1 integrin and chondroitin sulfate proteoglycans in cell adhesion to the heparin III domain of fibronectin. Identification of a novel heparin and cell binding sequence in repeat III5. J. Biol. Chem. 274, 135-142.], we found that the first two arginine residues in HBP/III5 were involved in the fibronectin-binding property of FNIII4-5, while the last two arginine residues in HBP/III5 were required for inhibition of matrix assembly and the binding of 125I-fibronectin to cell layers. Both properties appear to function independently from each other, depending on the conformation of the fibronectin dimer.  相似文献   

5.
Lung endothelial dipeptidyl peptidase IV (DPPIV/CD26) is a vascular address for cancer cells decorated with cell-surface polymeric fibronectin (poly-FN). Here, we identified the DPPIV-binding sites in FN and examined the effect of binding site peptides on DPPIV/poly-FN adhesion and metastasis. Using proteolytic fragments and maltose-binding protein fusion proteins that together span full-length FN, we found DPPIV-binding sites in type III repeats 13, 14, and 15 (FNIII13, -14, and -15, respectively). DPPIV binding was mediated by the consensus motif T(I/L)TGLX(P/R)G(T/V)X and was confirmed by swapping this motif in FNIII13, -14, and -15 with the corresponding region in FNIII12, which did not bind DPPIV. DPPIV binding was lost in swapped FNIII13, -14, and -15 and gained in swapped FNIII12 (FNIII12(14)). Peptides containing the DPPIV-binding domain of FNIII14 blocked DPPIV/poly-FN adhesion and impeded pulmonary metastasis. This study adds to the classes of cell-surface adhesion receptors for FN and will help in the further characterization of the functional implications of the DPPIV/poly-FN adhesion in metastasis and possibly in cell-mediated immunity involving DPPIV-expressing lymphocytes.  相似文献   

6.
We have studied the function of the Hep III fibronectin domain in the cytoskeletal response initiated by alpha5beta1 integrin-mediated adhesion. Melanoma cells formed stress fibers and focal adhesions on the RGD-containing FNIII7-10 fragment. Coimmobilization of FNIII4-5, a fragment spanning Hep III and containing the alpha4beta1 ligand H2 with FNIII7-10, or addition of soluble FNIII4-5 to cells preattached to FNIII7-10, inhibited stress fibers and induced cytoplasmic protrusions. This effect involved alpha4beta1 since: 1) mutations in H2 reverted the inhibition; 2) other alpha4beta1 ligands (CS-1, VCAM-1), an anti-alpha4 mAb, or alpha4 expression in HeLa cells inhibited stress fibers. This activity was apparently cryptic in fibronectin or large fibronectin fragments, but exposed upon proteolytic degradation. Indeed purified peptic fragments containing H2, inhibited stress fibers when mixed with FNIII7-10 or fibronectin. RhoA activation with LPA or transfection with V14RhoA reverted the inhibitory effect and induced stress fibers on FNIII7-10+FNIII4-5. Furthermore, addition of alpha4beta1 ligands to FNIII7-10, down-regulated RhoA and activated p190RhoGAP, which localized to cytoplasmic protrusions. alpha4beta1/ligand interaction induced cell migration, monitored by video microscopy and wound healing assays. These data indicate that alpha4beta1 provides an antagonistic signal to alpha5beta1 by interfering with the RhoA activation pathway and this leads to melanoma cell migration.  相似文献   

7.
Fibroblast growth factor (FGF) is an important modulator of cell growth and differentiation of various cells including neuron. Cells need to adhere specifically to cellular and extracellular components of their environment to carry out diverse physiological functions. Here, we examined whether fibronectin (FN) and FGF can cooperate for neuronal adhesion and neurite outgrowth. Using recombinant FN peptide (FNIII9-10), we found that FNIII9-10-mediated adhesion promotes the effect of FGF1 on neurite outgrowth of PC12 cells, while FGF1 enhances the FNIII9-10-mediated neuronal adhesion of PC12 cells. This collaboration of FNIII9-10 and FGF1 was the result of the sustained activation of extracellular signal-regulated kinase (ERK)-type MAP kinase. Finally, the synergistic activity of FGF1 and FN was inhibited by PD98059, an MEK inhibitor. Taken together, these findings indicate that FN-mediated signaling can collaborate with FGFRs signaling for neurite outgrowth through selective activation of ERK-type MAP kinase in PC12 cells, and suggest that FN and FGF act in concert to regulate cell differentiation in the nervous system.  相似文献   

8.
How fibronectin (FN) converts from a compact plasma protein to a fibrillar component of extracellular matrix is not understood. "Functional upstream domain" (FUD), a polypeptide based on F1 adhesin of Streptococcus pyogenes, binds by anti-parallel β-strand addition to discontinuous sets of N-terminal FN type I modules, (2-5)FNI of the fibrin-binding domain and (8-9)FNI of the gelatin-binding domain. Such binding blocks assembly of FN. To learn whether ligation of (2-5)FNI, (8-9)FNI, or the two sets in combination is important for inhibition, we tested "high affinity downstream domain" (HADD), which binds by β-strand addition to the continuous set of FNI modules, (1-5)FNI, comprising the fibrin-binding domain. HADD and FUD were similarly active in blocking fibronectin assembly. Binding of HADD or FUD to soluble plasma FN exposed the epitope to monoclonal antibody mAbIII-10 in the tenth FN type III module ((10)FNIII) and caused expansion of FN as assessed by dynamic light scattering. Soluble N-terminal constructs truncated after (9)FNI or (3)FNIII competed better than soluble FN for binding of FUD or HADD to adsorbed FN, indicating that interactions involving type III modules more C-terminal than (3)FNIII limit β-strand addition to (1-5)FNI within intact soluble FN. Preincubation of FN with mAbIII-10 or heparin modestly increased binding to HADD or FUD. Thus, ligation of FNIII modules involved in binding of integrins and glycosaminoglycans, (10)FNIII and (12-14)FNIII, increases accessibility of (1-5)FNI. Allosteric loss of constraining interactions among (1-5)FNI, (10)FNIII, and (12-14)FNIII likely enables assembly of FN into extracellular fibrils.  相似文献   

9.
Cell adhesion and spreading on solid phase fibronectin (FN), coated on plate or presented in extracellular matrix, are mediated by integrin receptors alpha5beta1, alpha4beta1, etc., although binding of "soluble-form FN" to cell surface varies extensively depending on glycosylation status of FN per se. Deposition or incorporation at the cell surface or pericellular matrix of soluble-form FN from body fluids or synthesized de novo takes place through a yet-unknown (perhaps integrin-independent) mechanism. Here we present evidence that the mechanism involves carbohydrate-to-carbohydrate interaction. Binding or incorporation of soluble-form placental or hepatoma FN to cell surface or pericellular matrix is highly dependent on the specific glycosylation status of FN per se and combination with glycosylation status of the cell surface, and is greatly promoted by a certain type of coexisting (shedded) glycosphingolipid. A few lines of study indicate that the process is mediated by interaction of FN carbohydrate with cell surface carbohydrate. The great enhancement of the binding process by glycosphingolipid is based on dual interaction of glycosphingolipid carbohydrate with FN carbohydrate and with cell surface carbohydrate. Here we present an example of promotion of binding of soluble-form FN from placenta or from hepatoma cells, having a specific carbohydrate epitope termed "disialyl-I," to K562 or VA13 cell surface in the presence of glycosphingolipid Gg3, which interacts specifically with disialyl-I.  相似文献   

10.
During extracellular matrix assembly, fibronectin (FN) binds to cell surface receptors and initiates fibrillogenesis. As described in this report, matrix assembly has been dissected using recombinant FN polypeptides (recFNs) expressed in mammalian cells via retroviral vectors. RecFNs were assayed for incorporation into the detergent-insoluble cell matrix fraction and for formation of fibrils at the cell surface as detected by indirect immunofluorescence. Biochemical and immunocytochemical data are presented defining the minimum domain requirements for FN fibrillogenesis. The smallest functional recFN is half the size of native FN and contains intact amino- and carboxy-terminal regions with a large internal deletion spanning the collagen binding domain and the first seven type III repeats. Five type I repeats at the amino terminus are required for assembly and have FN binding activity. The dimer structure mediated by the carboxy-terminal interchain disulfide bonds is also essential. Surprisingly, recFNs lacking the RGDS cell binding site formed a significant fibrillar matrix. Therefore, FN-FN interactions and dimeric structure appear to be the major determinants of fibrillogenesis.  相似文献   

11.
Fibronectin plays important roles in erythropoiesis through the fibronectin receptors VLA-4 and VLA-5. However, the substantial role of these fibronectin receptors and their functional assignment in erythroid differentiation are not yet fully understood. Here, we investigated the effects of cell adhesion to fibronectin on erythroid differentiation using K562 human erythroid progenitor cells. Erythroid differentiation could be induced in K562 cells in suspension by stimulating with hemin. This hemin-stimulated erythroid differentiation was highly accelerated when cells were induced to adhere to fibronectin by treatment with TNIIIA2, a peptide derived from tenascin-C, which has recently been found to induce β1-integrin activation. Another integrin activator, Mn2+, also accelerated hemin-stimulated erythroid differentiation. Adhesive interaction with fibronectin via VLA-4 as well as VLA-5 was responsible for acceleration of the hemin-stimulated erythroid differentiation in response to TNIIIA2, although K562 cells should have been lacking in VLA-4. Adhesion to fibronectin forced by TNIIIA2 causally induced VLA-4 expression in K562 cells, and this was blocked by the RGD peptide, an antagonist for VLA-5. The resulting adhesive interaction with fibronectin via VLA-4 strongly enhanced the hemin-stimulated activation of p38 mitogen-activated protein kinase, which was shown to serve as a signaling molecule crucial for erythroid differentiation. Suppression of VLA-4 expression by RNA interference abrogated acceleration of hemin-stimulated erythroid differentiation in response to TNIIIA2. Thus, VLA-4 and VLA-5 may contribute to erythropoiesis at different stages of erythroid differentiation.Hematopoietic stem and progenitor cells proliferate and differentiate in the bone marrow and fetal liver (16). Stromal cells of the bone marrow and fetal liver form a hematopoietic microenvironment called a “niche.” This microenvironment niche plays a crucial role in the regulation of the proliferation and differentiation of hematopoietic stem and progenitor cells. Besides humoral factors that include hematopoietic growth factors, adhesive interaction of hematopoietic stem and progenitor cells with stromal cells and/or the extracellular matrix (ECM)2 in the hematopoietic microenvironment is indispensable for hematopoietic development (16). The ECM in the hematopoietic microenvironment is composed of various macromolecules, such as fibronectin (FN), collagens, laminins, and proteoglycans. Among them, FN is one of the most important parts of the microenvironment niche (711). Also, in erythropoiesis, the importance of the adhesion of erythroid progenitors to FN via the FN receptors VLA-4 and VLA-5 has been reported (1116). However, the substantial role of these FN receptors and their functional assignment in erythroid differentiation are not yet fully understood.We previously found that FN, which provides scaffolding for the adhesion of various cell types, has an alternative functional site opposing cell adhesion (17). A 22-mer peptide derived from the 14th FN type III-like (FNIII) repeat of the FN molecule, termed FNIII14, strongly suppresses cell adhesion to FN by inhibiting the activation of β1-integrins including VLA-4 and VLA-5 (18, 19). Conversely, we have recently found that tenascin (TN)-C, which is an anti-adhesive ECM protein (20, 21), has a functional site for stimulating cell adhesion to FN (22). A 22-mer peptide derived from the FNIII repeat A2 in the TN-C molecule, termed TNIIIA2, can induce the conformational change necessary for functional activation of FN receptors through binding with syndecan-4 (22, 23). The active sites of FNIII14 and TNIIIA2 appear to be cryptic in the molecular structures of FN and TN-C but are exposed by conformational change through interaction with other ECM molecules or by processing with matrix metalloproteinase-2 (22, 24). Thus, these functional sites found in FN and TN-C molecules, which act in opposition to their parental ECM proteins, may act as a negative feedback loop for preventing excessive cellular responses to these ECM proteins in biological processes with ECM rearrangement. In any case, FNIII14 and TNIIIA2 enable us to control, either negatively or positively, the adhesion of various cell types to FN.Various hematopoietic progenitor cell lines have been used in in vitro studies of hematopoietic differentiation. However, most hematopoietic progenitor cell lines are nonadherent, because their cell surface β1-integrins, including FN receptors, have impaired ligand-binding activity (25, 26). Therefore, in order to investigate the role of cell adhesion to FN in hematopoietic differentiation, their FN receptors must be activated. Since TNIIIA2 can induce activation of FN receptors in various hematopoietic progenitor cell lines (22), this peptide factor may be useful for investigating the substantial role of cell adhesion to FN in hematopoietic differentiation. Here, we investigate the effects of cell adhesion to FN on erythroid differentiation using TNIIIA2 and Mn2+ as the integrin activator and the human erythroid progenitor cell line K562, which only expresses VLA-5, as the FN receptor (27). As a result, we show that hemin-stimulated erythroid differentiation of K562 cells is strongly enhanced when K562 cells are forced to adhere to FN. Sustained adhesion to FN via VLA-5, which is induced by TNIIIA2 or Mn2+, causes induction of VLA-4 expression. The resulting adhesive interaction with FN via newly expressed VLA-4 then generates a conspicuous increase in the hemin-stimulated phosphorylation/activation of p38 MAP kinase, which is shown to serve as a signaling molecule crucial for erythroid differentiation of K562 cells.  相似文献   

12.
Fibronectin (FN) containing a heparin-binding domain (HBD) and an Arg-Gly-Asp (RGD) domain can promote cell adhesion and proliferation compared to FN that contained only RGD. Here, we have engineered recombinant human osteocalcin (rhOC) with FN type III9-14 (rhOC-FNIII9-14) containing RGD and HBD to promote the cellular activity of MC3T3-E1 cells, including adhesion, proliferation, and differentiation. RhOC-FNIII9-14 significantly increased cell adhesion and proliferation of MC3T3-E1 cells compared to rhOC-FNIII9-10 (P < 0.05). Moreover, rhOC-FNIII9-14 showed osteogenic differentiation of MC3T3-E1 cells in mineralization activity and osteogenic gene expression.  相似文献   

13.
The mechanical hierarchies of fibronectin observed with single-molecule AFM   总被引:7,自引:0,他引:7  
Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanical properties of fibronectin (FN) and its individual FNIII domains. We found that fibronectin is highly extensible due to the unfolding of its FNIII domains. We found that the native FNIII region displays strong mechanical unfolding hierarchies requiring 80 pN of force to unfold the weakest domain and 200 pN for the most stable domain. In an effort to determine the identity of the weakest/strongest domain, we engineered polyproteins composed of an individual domain and measured their mechanical stability by single-protein atomic force microscopy (AFM) techniques. In contrast to chemical and thermal measurements of stability, we found that the tenth FNIII domain is mechanically the weakest and that the first and second FNIII domains are the strongest. Moreover, we found that the first FNIII domain can acquire multiple, partially folded conformations, and that their incidence is modulated strongly by its neighbor FNIII domain. The mechanical hierarchies of fibronectin demonstrated here may be important for the activation of fibrillogenesis and matrix assembly.  相似文献   

14.
Early development of the urodele amphibian Pleurodeles waltl is accompanied by a process of progressive fibronectin (FN) fibrillogenesis. FN begins to assemble into fibrils on the inner surface of the blastocoele roof at the early blastula stage and progressively forms a complex extracellular matrix. We have analyzed the mechanisms of FN-fibril formation under normal and experimental conditions in vivo with the following probes: iodinated FN, fluorescein-labeled FN, synthetic peptides containing the Arg-Gly-Asp (RGD) cell surface recognition sequence of FN, and polyclonal antibodies against both beta 1 subunit of the amphibian FN receptor and the cytoplasmic domain of beta 1 subunit. We report that in living embryos, exogenous labeled mammalian FN injected into the amphibian blastocoele undergoes FN-fibril formation in spatiotemporal patterns similar to those of endogenous FN. This indicates regulation of fibrillogenesis by the cell surface rather than by changes in the type of FN. Fibrillogenesis is inhibited in a dose-dependent manner both by the GRGDS peptide and monospecific antibodies to amphibian integrin beta 1 subunit. Furthermore, when injected intracellularly into uncleaved embryos or into selected blastomeres, antibodies to the cytoplasmic domain of integrin beta 1 subunit produce a reversible inhibition of FN-fibril formation that follows early cell lineages and cause delays in development. Together, these data indicate that in vivo, the integrin beta 1 subunit and the RGD recognition signal are essential for the proper assembly of FN fibrils in early amphibian development.  相似文献   

15.
Maurer LM  Annis DS  Mosher DF 《PloS one》2012,7(2):e30615
Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K) of fibronectin (FN) stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD) motifs in four of the nine FN type 1 (FNI) modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3)FNI and (5)FNI; (7)FNI and (9)FNI; or (3)FNI, (5)FNI, (7)FNI, and (9)FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3)FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9)FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.  相似文献   

16.
Mesangial cell apoptosis induced by a fibronectin fragment   总被引:1,自引:0,他引:1  
We previously showed that in passive Heymann nephritis (PHN) rats, a large quantity of fibronectin (FN) fragments containing the central cell-binding (CCB) domain and adjacent domains are generated in the kidney and excreted into urine (Nishizawa et al., Biol Pharm Bull 1998; 21: 429–433). To ascertain whether the FN fragments could affect the progression of PHN, we investigated the effect of a 150 K FN fragment containing the CCB and carboxyl-terminal heparin-binding (Hep 2) domains on cultured rat mesangial cells. When rat mesangial cells cultured on FN-coated plates were exposed to the 150 K FN fragment, some mesangial cells detached from the FN substrate and then underwent apoptosis as judged by nuclear and DNA fragmentations. The 150 K FN fragment competitively inhibited the mesangial cell adhesion to the FN substrate in a dose-dependent manner. Furthermore, gelatinzymography of the conditioned medium of mesangial cells showed that the 150 K FN fragment induced and/or poteintiated the extracellular matrix (ECM)-degrading proteinases including matrix metalloproteinases (MMPs) of mesangial cells. These results indicate that the 150 K FN fragment may elicit mesangial cell apoptosis by disrupting the mesangial cell adhesion through two distinct ways: the inhibition of mesangial cell adhesion and the ECM-degradation by the 150 K FN fragment-induced MMPs. Thus, FN fragments containing the CCB and adjacent domains generated in the kidneys of PHN rats may be involved in the evolution of the renal injury.  相似文献   

17.
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.  相似文献   

18.
19.
Neural stem/progenitor cells (NSCs) have the capacity for self-renewal and differentiation into major classes of central nervous system cell types, such as neurons, astrocytes, and oligodendrocytes. The determination of fate of NSCs appears to be regulated by both intrinsic and extrinsic factors. Mounting evidence has shown that extracellular matrix molecules contribute to NSC proliferation and differentiation as extrinsic factors. Here we explore the effects of the epidermal growth factor-like (EGFL) and fibronectin type III homologous domains 6-8 (FN6-8) of the extracellular matrix molecule tenascin-R on NSC proliferation and differentiation. Our results show that domain FN6-8 inhibited NSC proliferation and promoted NSCs differentiation into astrocytes and less into oligodendrocytes or neurons. The EGFL domain did not affect NSC proliferation, but promoted NSC differentiation into neurons and reduced NSC differentiation into astrocytes and oligodendrocytes. Treatment of NSCs with beta 1 integrin function-blocking antibody resulted in attenuation of inhibition of the effect of FN6-8 on NSC proliferation. The influence of EGFL or FN6-8 on NSCs differentiation was inhibited by beta 1 integrin antibody application, implicating beta 1 integrin in proliferation and differentiation induced by EGFL and FN6-8 mediated triggering of NSCs.  相似文献   

20.
We report the effect of the stable expression of a 13 amino acid human fibronectin (FN) peptide (FN13) on the organization of the FN extracellular matrix (ECM) and of FN integrin receptors (FNRs), in relationship with the inhibition of cellular invasion, in three FN-ECM defective human tumor-derived cell lines: SK-Hep1C3, hepatoma, ACN, neuroblastoma, and SK-OV-3, ovary carcinoma. All these cell lines stably expressing the FN13 peptide, organized an FN-ECM, disorganized alpha v beta 1 integrins and inactivated the ILK pathway, with the loss of secretion of MMP-9. This was associated with the inhibition of cell invasion in Matrigel matrix only in SK-Hep1C3 and ACN, but not in SK-OV-3 cells. Analysis of the integrin receptors organization showed that the FN13 expressing cells SK-Hep1C3 and ACN organized alpha v beta 3 integrins, whereas SK-OV-3 organized alpha v beta 5 dimers. The functional block of alpha v beta 5 integrins, with an inactivating anti-alpha v beta 5 antibody, led to the induction of alpha v beta 3 integrins also in SK-OV-3 cells, and to the inhibition of cell invasion. These data show that in the human tumor cells studied FN13 inhibits the in vitro invasion through the dissociation of alpha v beta 1 dimers, leading to ILK pathway inactivation, only when the organization of alpha v beta 3 integrins is induced in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号